
NEURAL SEQUENTIAL MALWARE DETECTION WITH PARAMETERS

Rakshit Agrawal∗⋆ Jack W. Stokes† Mady Marinescu, Karthik Selvaraj±

⋆ University of California, Santa Cruz, Santa Cruz, CA 95064 USA
† Microsoft Research, One Microsoft Way, Redmond, WA 98052 USA
± Microsoft Corp., One Microsoft Way, Redmond, WA 98052 USA

ABSTRACT

Sequential models which analyze system API calls have shown
promise for detecting unknown malware. Athiwaratkun and Stokes
recently proposed a two-stage model which uses a long short-term
memory (LSTM) model for learning a set of features which are then
input to a second classifier. Kolosnjaji et al., first use a convolutional
neural network followed by an LSTM to predict unknown malware.
However, neither of these models consider the parameters which are
input to the system API calls. These input parameters offer signifi-
cant information regarding malicious intent. In this paper, we extend
Athiwaratkun’s model to include each system API call’s two most
input parameters. We then show that the proposed model dominates
these previously proposed models in terms of the receiver operating
characteristic (ROC) curve.

Index Terms— Malware Classification, Deep Learning, Long
Short-Term Memory, Char-Grams

1. INTRODUCTION

The detection of malware (i.e., malicious software) is important to
protect a user’s computer from infections. Microsoft Corporation re-
ceives hundreds of thousands of previously unknown files each day.
Malware classification helps to automatically create signatures for
the client computer and detect malware in its cloud protection ser-
vice.

Related Work: Malware classification has been extensively
studied for over two decades [1]. Kephart first proposed to use a
neural network for malware classification in [2]. Dahl et al., [3]
investigated deep learning for malware classification for features
generated by dynamic analysis in 2013. Saxe and Berlin [4] next
proposed a deep neural network for static classification-based fea-
tures. Huang and Stokes [5] extended Dahl’s work in a multi-task
framework where the two tasks which were used to train the model
included binary classification and family classification.

Pascanu et al., [6] first proposed recurrent models for evalu-
ating system API calls. The authors proposed a two-stage model
(RNN-NN) which employs either a recurrent neural network or an
echo state network for recurrent model in the first stage, followed
by a neural network as the classifier. Kolosnjaji et al., [7], pro-
posed a convolutional neural network-based architecture for captur-
ing nearby event representations followed by an LSTM [8, 9] and
a classifier (CNN-LSTM). They presented results on classification
among malware families in pre-detected malware. Athiwaratkun et
al., [10] improved Pascanu’s model by replacing the first stage with
either an LSTM or a Gated Recurrent Unit (GRU) [11]. They also

∗The first author performed the work while at Microsoft Research

investigated a character-level CNN [12] in their work. The LSTM-
based system outperformed the other recurrent models proposed by
Pascanu, et al., [6]

Data Source and Features: Windows Defender, which has
been included in all versions of client and server Windows operating
system since Windows 8, provides antivirus signatures in addition
to antispyware signatures. For Windows versions prior to Windows
8, Windows Defender only included signatures for antispyware.
Whenever the user attempts to install a file on their Windows com-
puter, the antivirus system is called before it is allowed to run on
the native operating system. For example, Windows Defender is
called by Outlook, Microsoft’s email client, when the user clicks
on an executable attachment, by Windows SmartScreen when the
user attempts to download an executable from the internet, or by the
operating system when the user begins to install a program from a
DVD.

In this research, we only consider the detection of Windows
portable executable (PE) files. Before the executable file is permit-
ted to run on the native operating system, Windows Defender first
attempts to emulate the file. In other words, the file is investigated
using dynamic analysis (i.e., behavioral analysis). In part, the Win-
dows Defender engine detects system API calls and their parameters
as the file is emulated.

Executable files may call multiple system APIs which accom-
plish the same task. For example, to create a new file, an executable
file may call either a user mode or kernel mode API to accomplish
this task. Similarly, the PE file may call the libc API fopen(). Poly-
morphic malware may attempt to call a different combination of
APIs for each installation to change its behavior and possibly avoid
detection. To handle this type of behavior, the Windows Defender
antivirus engines maps a number of equivalent APIs to a single high-
level event to reduce the challenges of detecting polymorphic files.
Since similar APIs may have different parameters, we only consider
two parameters for each high-level API system call event.

Proposed Solution: In this paper, we propose a novel architec-
ture, using Long Short-Term Memory (LSTM) [8, 9] recurrent neu-
ral networks, which extends previously proposed sequential malware
classification models to include the two most important system API
call parameters. We provide efficient methods of exploring a wide
vocabulary space of parameters and derive representations that can
be learned along with the remaining system. Our model includes the
parameter data along with event sequences, and aligns itself in order
to leverage their presence without compromising sequential learning
over the events.

Threat Model: The threat model makes the following assump-
tions about the attackers. The file must be submitted to the Windows
Defender antivirus engine for analysis. Files dropped by other means
such as drive-by downloads may not be submitted by the operating
system or any of its components for scanning. Next, the file must be

successfully emulated by the antivirus engine. In some cases, mal-
ware may attempt to detect that it is being emulated and either halt
execution or only execute benign activity. Finally, the proposed de-
tection method relies on the execution of system API calls. If the
attacker decides to re-implement portions of the underlying operat-
ing system in assembly or C++, the model may fail to detect the
malicious behavior.
Contributions of this work include:

1. We propose and implement a novel neural sequential malware
classification model which processes system API calls and
includes the two most important input parameters.

2. We conduct a study to evaluate the model which analyzes re-
cent malware collected by a production antimalware engine.

3. We demonstrate that the proposed model significantly outper-
forms other neural sequential malware classification models,
particularly at low false positive rates, which do not include
the input parameters.

2. METHODS

The data for detecting malware, as discussed earlier in the paper,
provides us with rich parameter information associated with each
API call within sequences. This added parameter information builds
a relation horizontally with the event and vertically with follow-
ing events and parameters in the sequence. While learning on the
events only, each identical event holds the same meaning for the
model whenever it occurs in the sequence, but when parameters are
included with each event, their presence can help detect the differ-
ence in the overall meaning of the event in a particular context. For
instance, a system call to remove a file can generate an event ‘Re-
move File’ whose parameters can include the name of the file to be
removed. This event, therefore, can vary significantly in its impact
on the system depending on the importance of file to be removed.

While it can be established that the presence of parameters can
potentially provide significantly more information about the actions,
their structure over a large dataset can be extremely complex for
conventional learning methods. Parameters, unlike events, are not
members of a limited vocabulary space, and instead span a huge
space with semantically highly uncorrelated entries. Parameters can
include specific names, API-specific arguments, numerical values,
and many such varying formats.

With our methods for processing parameters within the neu-
ral framework, we present neural models that can leverage addi-
tional parameter information along with the events in a sequence and
use them to improve the learning capabilities for detecting malware.
This section describes these methods in detail and presents two mod-
els - “Events Only” and “Events + Parameters”. Both models are
trained completely via backpropagation through time [13] using the
loss derived from the target label associated with each file.

2.1. Parameter Preprocessing

The parameters in our large dataset, with their high variability, make
it difficult to learn embeddings individually for each parameter term
in the corpus. Since these parameters can be of any format and are
not specific numerical values, they cannot be used as normalized
scalars that can be concatenated with event embeddings while learn-
ing them sequentially.

We observe that parameters hold both semantic and structural
significance within a sequence. While some parameters hold rele-
vance with their semantic meaning in the dataset, others might be

Algorithm 1 CHARGRAM

Input: Parameter Corpus Cp, N-gram size ν, Threshold k
Initialize grams = [].
for i = 0 to len(Cp)− 1 do

Ap = Characterize(Cp[i])
for j = 0 to (len(Ap)− ν) do

APPEND(Ap[j : j + ν − 1], grams)
end for

end for
FDCp = FREQDIST(grams)
grams = SORTED(FDCp)[:k]
return grams

Algorithm 2 PARAMETERIZE

Input: File Sequence F , Parameter Count m, Grams g
Initialize E = [], P1, . . . Pm = [], . . . []
for i = 0 to len(F)− 1 do

event = F [i][0]
params = []
for j = 1 to m do

params[j] = F [i][j]
params[j] = VECTORIZE(params[j], g)
APPEND(params[j], Pj)

end for
APPEND(event, E)

end for
return E,P1, . . . Pm

defined by their patterns of use. These parameters can also hold
different meaning depending on their position within the sequence,
as well as whether they are the first or second parameter associated
with an event. Parameters like file paths, relevant file extensions, and
command attributes can update the meaning of events in the overall
processing of a file.

Due to the variation in the structure and size of the vocabu-
lary, we use these parameters in a limited character space. Each
parameter, once translated into characters, can be restricted within
a reasonably-sized space for learning. We use these parameters by
learning character grams from them. The process of constructing
character grams, or Char-Grams, is explained in Algorithm 1.

The corpus in Algorithm 1 is built using each parameter associ-
ated with any event API within the entire dataset. We convert each
of these parameters into sequences tokenized over characters instead
of words. We then build n-grams over these characters in the corpus,
followed by the construction of a frequency distribution over the set
of n-grams. Due to the extremely large number of total n-grams, we
extract only the top-K, most frequent n-grams from this distribution
and use them as our bag of words for the parameter dataset. Using
Algorithms 2 and 3, each parameter can now be represented as a
K-sized sparse vector with each position specifying the presence or
absence of a specific n-gram. Algorithm 2 helps generate a new se-
quence from these sparse vectors that can be used as an updated input
for the model, where the events are vectorized on a fixed vocabulary,
and the parameters are vectorized using the process described above.

Attaining the sparse vector representations of the parameters al-
lows us to use them as a part of a neural model along with the system
API calls. However, using them directly in this form with the API
call sequences would drastically increase the parameter space for se-
quence learning. We, therefore, propose the use of a shared dense
tanh layer through which each parameter representation passes be-

Algorithm 3 VECTORIZE

Input: Parameter ρ, Grams g
Initialize vec = Zeros(len(g))
for i = 0 to len(g)− 1 do

if g[i] ∈ ρ then
vec[i] = 1

end if
end for
return vec

Algorithm 4 API-PARAMETER SEQUENCE GENERATOR

Input: File sequence F , Parameter Count m, Grams g
E, P1, . . . Pm = PARAMETERIZE(F,m, g)
Initialize E′ = []
for i = 0 to len(F)− 1 do

for j = 1 to m do
RPj = tanh(WP ∗ Pj [i])

end for
E′[i] = CONCATENATE([E[i], RP1, . . . RPm])

end for
return E′

fore being used with the remaining model. Learning of the weights,
WP , for this layer is directed by the loss from the final label associ-
ated with the entire sequence only and is done when backpropagating
the loss gradient through the complete model. Algorithm 4 explains
the process of obtaining updated sequences containing the combined
event and parameter information in the form of embeddings.

2.2. Sequential Processing

Once we have obtained the updated sequence consisting of events
and parameter embeddings, we need to use sequential learning
mechanisms that can help us capture the vertical relationship in
the sequence along with the horizontal relationships derived using
parameter embeddings. While parameter embeddings provide a
more complete representation of each event, their co-occurrence
with other events can only be learned through sequence learning.
Similar to the neural models discussed in [10], we pass the updated
sequence through LSTM layers for sequence learning. Our Events
Only model is based on [10] and can be used with a variable number
of LSTM layers, while being trained directly from the final label.
We use NLSTM to denote the number of LSTM layers used over the
sequences.

Like [6], we perform temporal max pooling over the LSTMs
in order to derive a vectorized representation of the sequence, that
can be used with classifiers. Since the detection of malware relies
on signals observed throughout the sequence, performing max pool-
ing over the sequence, instead of using the final activation from the
LSTM, helps retain any relevant activation learned throughout the
sequence, and not necessarily the predicted activation after a certain
point within the sequence.

2.3. Classification

The primary objective of the neural models performing malware de-
tection is to classify a file sequence input as being malicious or clean.
Neural classification layers include the use of linear models like lo-
gistic regression, and denser models like multi-layer perceptrons.
We built our system to use H variable hidden dense ReLU layers

MAXPOOL1D

s

ReLU

mp

STACKED

LSTMS

CLASSIFICATION
BLOCK

CLh

N-GRAM

tanh

CONCATENATECONCATENATECONCATENATE

PARAMETER
LEARNING

E =
P1 =
P2 =

P1
P2

E

E’ =

Fig. 1. System Architecture using Events and Parameters

followed by a sigmoid layer for predicting the probability of input
file being malicious.

This classification module completes our model, which takes a
file sequence as input, and a malware label as the model target. The
Events Only model uses the sequence of just the events, whereas the
Events + Parameters model uses events along with the parameters
associated with each event. The classification module for both mod-
els is the same and operates on vectorized representations obtained
from the LSTMs.

The classification layer is supervised with the label associated
with each file, which is used to measure a loss while training the
model. This loss is used to update the weights throughout the model
using backpropagation and is connected completely from input se-
quences to the final prediction. The Events + Parameters model
using two parameters with each event is illustrated in Figure 1.

3. EXPERIMENTAL RESULTS

In this section, we discuss the datasets which are used to train and
test our model, describe the experimental setup which was used to
conduct the experiments, and present the results which compare our
model with previously proposed models.

Datasets: We collected the system API calls and their param-
eters from 75,000 files, which were evenly split between malware
and benign files, in September 2017. The data from all of the files
is unique, and there is a total of 158 event types in our data. This

collection was next randomly split into training, validation, and test
sets of 50,000, 10,000, and 15,000, respectively, while maintaining
the even split between malware and benign files.

Experimental Setup: All models are implemented and evalu-
ated using Keras [14] with the Tensorflow [15] backend. We follow
the model settings for the CNN-LSTM as suggested by Kolosnjaji et
al., in [7].

We next describe the parameter settings for all of the recurrent
models. The maximum sequence length is 200, and the hidden layer
dimension is set to 1500. The minibatch size is equal to 128, and the
embedding size is 114. The number of epochs is set to 5 for train-
ing the recurrent model with parameters and 15 for the remainder of
the models. All recurrent models include bag-of-words features in
addition to the events and possibly their parameters. Parameter pre-
processing uses character n-grams of size 3 (tri-grams). The maxi-
mum length of the parameters is set to 24. We use the top 10,000
tri-grams to vectorize each parameter. The output dimension of the
tanh processing layer for the parameters is set to 256.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

False Positive Rate (%)

0

10

20

30

40

50

60

70

80

90

100

T
ru

e
P

os
iti

ve
 R

at
e

(%
)

LSTM=1, NN-H=1
LSTM=1, NN-H=2
LSTM=2, NN-H=1
LSTM=2, NN-H=2

Fig. 2. ROC curves for the Events Only LSTM+NN models. The
model with a single layer LSTM and a single hidden layer neural
network offers the best performance among these models.

Model Evaluation: Athiwaratkun and Stokes originally pro-
posed an Events Only LSTM-NN model with a two-layer LSTM,
NLSTM = 2, and a shallow neural network classifier with a single
hidden layer, H = 1. We evaluate the performance of the Events
Only LSTM-NN architecture for our data with all configurations of
NLSTM ∈ {1, 2} and H ∈ {1, 2} in Figure 2. The figure clearly
indicates that the best performing Events Only LSTM-NN model for
our data is NLSTM = 1 and H = 1.

With NLSTM = 1 and H = 1, we next evaluate the perfor-
mance of the proposed Events + Parameters model in Figure 3. We
also include the results of three Events Only models, including the
CNN-LSTM and two versions of the LSTM-NN models for com-
parison. Our Events + Parameters model clearly dominates all of
the Events Only models, and offers significant improvement over all
models, particularly at lower false positive rates (FPRs). This per-
formance is notable because malware classifiers must be tuned to
have low false positive rate so that they do not remove benign files
including those installed by the operating system (OS). Quarantin-
ing or removing operating system critical files could prevent the OS

from booting rendering the computer useless.
A key measurement is the amount of time required to train these

models. The time required to train and test the proposed Events +
Parameters model is 6 days, 7 hours and 51 minutes. Similarly, the
training and test time of the best LSTM-NN baseline is 3 hours 23
minutes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

False Positive Rate (%)

0

10

20

30

40

50

60

70

80

90

100

T
ru

e
P

os
iti

ve
 R

at
e

(%
)

Events Only, Athiwaratkun, LSTM=1, NN-H=1
Events Only, Athiwaratkun, LSTM=2, NN-H=1
Events Only, Kolosnjaji, CNN+LSTM
Events+Parameters, LSTM=1, NN-H=1

Fig. 3. Comparison of the ROC curves for two versions of the Events
Only LSTM+NN model, the Events Only CNN+LSTM model, and
the proposed Events + Parameters model.

4. CONCLUSIONS

The parameters associated with API calls are an important aspect
of programmatic behavior. Sequential models which fail to include
the parameters are ignoring important information. The results from
Section 3 demonstrate that including the parameters significantly im-
proves the performance compared to previously proposed models
which do not include parameters as input.

This paper opens a new space of exploration by enabling the use
of parameters within sequential models trained entirely via back-
propagation. Methods described in Section 2 confirm the possi-
bility of capturing extensively variable parameter information in a
vector space for learning. Independent model design of parameter
pre-processing also ensures the use of these parameters in sequen-
tial models as the trainable vectorized form can be attached with any
sequence at the input level.

5. REFERENCES

[1] N. Idika and A.P. Mathur, “A survey of malware detection
techniques,” Tech. Rep., Purdue Univ., February 2007.

[2] Jeffrey O. Kephart, “A biologically inspired immune system
for computers,” in In Artificial Life IV: Proceedings of the
Fourth International Workshop on the Synthesis and Simula-
tion of Living Systems. 1994, pp. 130–139, MIT Press.

[3] George E. Dahl, Jack W. Stokes, Li Deng, and Dong Yu,
“Large-scale malware classification using random projections

and neural networks,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2013.

[4] Joshua Saxe and Konstantin Berlin, “Deep neural network
based malware detection using two-dimensional binary pro-
gram features,” Malware Conference (MALCON), 2015.

[5] Wenyi Huang and Jack W. Stokes, “Mtnet: A multi-task neu-
ral network for dynamic malware classfication,” in Proceed-
ings of Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 2016, pp. 399–418.

[6] Razvan Pascanu, Jack W. Stokes, Hermineh Sanossian, Mady
Marinescu, and Anil Thomas, “Malware classification with
recurrent networks,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2015, pp. 1916–1920.

[7] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Clau-
dia Eckert, “Deep learning for classification of malware system
call sequences,” in Australasian Joint Conference on Artificial
Intelligence. Springer International Publishing, 2016, pp. 137–
149.

[8] Sepp Hochreiter and Jurgen Schmidhuber, “Long short-term
memory,” in Proceedings of Neural Computation, 1997, pp.
1735–1780.

[9] Felix A Gers Jj, Urgen Schmidhuber, and Fred Cummins,
“Learning to Forget: Continual Prediction with LSTM,” 1999.

[10] B. Athiwaratkun and J. W. Stokes, “Malware classification
with lstm and gru language models and a character-level cnn,”
in 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), March 2017, pp. 2482–2486.

[11] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio, “Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation,” jun
2014.

[12] Xiang Zhang, Junbo Zhao, and Yann LeCun, “Character-level
convolutional networks for text classification,” in Proceedings
of the 28th International Conference on Neural Information
Processing Systems - Volume 1, Cambridge, MA, USA, 2015,
NIPS’15, pp. 649–657, MIT Press.

[13] P.J. Werbos, “Backpropagation through time: what it does and
how to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp.
1550–1560, 1990.

[14] François Chollet et al., “Keras,” https://github.com/
fchollet/keras, 2015.

[15] Martı́n Abadi et al., “TensorFlow: Large-scale machine learn-
ing on heterogeneous systems,” 2015, Software available from
tensorflow.org.

