
1

Robust Neural Malware Detection Models for
Emulation Sequence Learning

Rakshit Agrawal★, Jack W. Stokes†, Mady Marinescu‡, and Karthik Selvaraj‡
★University of California at Santa Cruz, Santa Cruz, CA 95064 USA
†Microsoft Research, One Microsoft Way, Redmond, WA 98052 USA
‡Microsoft Corp., One Microsoft Way, Redmond, WA 98052 USA

Abstract—Malicious software, or malware, presents a contin-
uously evolving challenge in computer security. These embedded
snippets of code in the form of malicious files or hidden within
legitimate files cause a major risk to systems with their ability
to run malicious command sequences. Malware authors even use
polymorphism to reorder these commands and create several ma-
licious variations. However, if executed in a secure environment,
one can perform early malware detection on emulated command
sequences.

The models presented in this paper leverage this sequential
data derived via emulation in order to perform Neural Malware
Detection. These models target the core of the malicious oper-
ation by learning the presence and pattern of co-occurrence of
malicious event actions from within these sequences. Our models
can capture entire event sequences and be trained directly using
the known target labels. These end-to-end learning models are
powered by two commonly used structures - Long Short-Term
Memory (LSTM) Networks and Convolutional Neural Networks
(CNNs). Previously proposed sequential malware classification
models process no more than 200 events. Attackers can evade
detection by delaying any malicious activity beyond the beginning
of the file. We present specialized models that can handle
extremely long sequences while successfully performing malware
detection in an efficient way. We present an implementation of
the Convoluted Partitioning of Long Sequences approach in order
to tackle this vulnerability and operate on long sequences. We
present our results on a large dataset consisting of 634,249 file
sequences, with extremely long file sequences.

Index Terms—Malware detection, Neural models, LSTM, Con-
voluted Partitioning of Long Sequences

I. INTRODUCTION

Malicious software, or malware, is a persistent and contin-
uously growing problem in computer security. Malware can
cause severe issues for computer users. By embedding certain
snippets of code within benign software, it can successfully
run malicious commands without being detected by anti-virus
software. This execution can be further modified by malware
authors as they can use polymorphism to reorder malicious
commands within different files. While ensuring coverage of
commands relevant to malware, they can hide within large sets
of legitimate commands and remain undetected. Before the
file is allowed to run on the native operating system, the anti-
malware engine first analyzes it using lightweight emulation.
This task of detecting malware within the emulation, however,
is extremely difficult. With continuously increasing number
of subtle variations observed in malware, simply constructing
sets of rules for detection can become obsolete very quickly.
But an underlying fact for any variant is its dependence on

the sequence of commands it needs to operate. While those
commands can be spread out within the execution, they cannot
be eliminated or invariably reordered. The nature of their co-
occurrence in sequence or in some patterns is still essential
for these variants to operate.

Machine learning models can be trained to learn both
the presence and sequential occurrence of events leading to
malicious actions. Neural networks for sequential learning like
Long Short-Term Memory or LSTM [1], [2] recurrent neural
networks excel at tasks of learning from sequences with a
fixed vocabulary. They have shown exemplary results over
the past few years in major sequential learning domains like
speech [3] and natural language [4], [5]. Besides these, LSTMs
have shown significant success in a much broader range of
sequential problems as well. Pointer Networks [6], Neural
Turing Machines and Differentiable Neural Computers [7],
[8] have demonstrated the ability of LSTMs to be used for
far more complex tasks when augmented with attention [9]
and memory [10].

AI-based learning models for malware detection, therefore,
can be constructed with the help of LSTMs when event
sequences are available. The use of language models with
Recurrent Neural Networks (RNNs) has been demonstrated
by [11], [12] on malware detection tasks. The two primary
objectives in such problems are event presence detection
and sequential occurrence binding. LSTMs, in particular, are
excellent operators for sequential occurrences, and hence lead
to significantly improved results in the process. Presence
detection can be performed efficiently using the Convolutional
Neural Networks, or CNNs [13]. While extremely effective in
computer vision [14], [15], CNNs have also shown success on
sequential learning problems [16], [17]. For the closely related
task of multi-class classification among malware families, the
authors in [18] have shown the use of CNNs as they capture
essential elements across the event sequences.

In this paper, we present robust models for Neural Malware
Detection that can operate directly on emulated file event
sequences in order to learn a probability of the file being
malicious in nature. These models are probabilistic, robust
and resilient against polymorphism observed in malicious files.
We present results from these deep models on a large dataset
consisting of 634,249 sequences of variable length. We believe
that this is by far the largest study of malware behavioral
models.

On performing structural evaluation of such models, we

2

explored a vulnerability persistent even in highly accurate
models that can potentially limit their long-term use if the
attackers learn to construct resilient malicious files. All of
these models are limited by the length of the sequences they
can operate on, making them ineffective against malware
hidden in extremely long sequences, or malicious files that
execute long running loops of legitimate commands before
reaching the malicious events. Potentially, the use of LSTMs
allows these models to learn very long sequences, as the cells
can continue to retain context. In language modeling, this
ability helps retain the necessary word context. However in
software event sequences, as observed in malware detection
data, context can be reset at several places along the sequence
and a distant hidden event can be harder to correlate with
consecutive malicious events. Apart from that, capturing full-
length sequences also results in extremely compute-intensive
models that are harder to train and deploy.

In this paper, we present neural models that are immune
to the length of the input sequence. We implement a version
of Convoluted Partitioning of Long Sequences (CPoLS) [19]
which can capture sequences of any variable length. This
allows our model to detect malware where events are hidden
deep within the sequences. This model partitions the input
sequence and distributes the learning process by using CNNs
within a recurrent learning setting. We present models for
efficiently learning complete event sequences with variable and
extremely long lengths in order to detect malware hidden deep
within the sequences. The CPoLS approach captures the entire
length of a sequence by splitting it into chunks and distributes
the learning process by using CNNs in a recurrent fashion. As
shown by Stokes et al. [19], such models retain the sequential
nature of input entirely without any loss of data. By preventing
the loss of data within the sequence, we also make our models
resilient against evasion.

The paper presents a description of all of our models with
an emphasis on removing any vulnerability in order to create
future resilient Neural Malware Detection systems. We start
by discussing the motivation behind this problem and the need
for neural models. We then discuss the data. This is followed
by a detailed discussion of our models. Next we describe the
experimental process and results obtained on our data. We
then present a small discussion on emerging challenges in
malware detection, as well as the potential use of our full-
length models in other domains. This discussion is followed
by a review of related literature. We conclude the paper with
a discussion of the benefits of the proposed neural models,
and the advantages of CPoLS inspired methodologies, for
performing lossless learning on extremely long sequences.

II. MOTIVATION

Advances in the space of malware detection using artificial
intelligence and machine learning have significantly strength-
ened the success rates in detection. Moreover, the concept of
using emulation sequences for file commands provides us with
a peek into the internal operations of a malicious file, allowing
for a learning model to understand its core. The primary
objective of learning malicious actions is finding the presence

of potential events within entire sequences and detecting
their sequential occurrence. This seemingly trivial learning
task, in reality, is much more challenging because of the
nature of these underlying commands. Individually, all these
commands refer to legitimate system operations and cannot
be associated with a level of badness. It is the ordered co-
occurrence of several such commands which triggers critical
actions within the system processing to deviate from standard
actions. Numerically, such models can still exhibit a very low
error rate and achieve a high accuracy. However, due to the
nature of such systems and their underlying data, error rate
alone is not a strong representation of a model. Due to their
real-world impact, false positive rates in malware detection
are also a critical metric of concern since they can potentially
prevent a computer from starting or working correctly [20].
A slight miss in the probability measurement from a malware
detection model can turn into a huge cost for the underlying
system.

Therefore, it is critical for a good detection model to judge
the event sequences at a much finer granularity and still
maintain a general enough weight association with events to
prevent false positives. In order to facilitate such learning,
the training methodology must put into consideration certain
characteristics of the dataset according to the algorithms being
used. We believe that neural models are a good choice here
because of the sequential nature of the data and their ability to
learn from a fixed vocabulary for the set of events observed in
these sequences. An important aspect for a robust Neural Mal-
ware Detection system is to exclude as many assumptions and
limitations from the training data as possible. We suggest using
sequences with variation in lengths, with similar distribution
over event vocabulary in both the label classes, and avoiding
loss of information throughout the sequences in order to regu-
larize the dataset sufficiently. We also propose that the model
should not be associated with direct embeddings of these
events throughout and must generate learned tensors in order
to escape hard binding of individual events with malware. It
is often possible among training batches to incur some bias
and associate higher weights with certain events commonly
found in sequences leading to a similar label. In such cases,
more significance might be learned towards particular events
rather than learning from entire sequences. A robust model
should be able to maximize detection among sequences, while
ensuring generalization over the entire length of an individual
sequence. Such systems can then learn patterns and ordered
co-occurrence of events causing malicious actions, instead of
directly learning event-based activations.

This criticality of the problem and the requirement to retain
learning within the respective general blocks motivates our
methods for malware detection. Our models leverage the
language model-based approach of LSTMs in order to join
the event sequences, perform convolutions to derive significant
occurrences within extremely long sequences, and ensure end-
to-end training in the attempt to learn embeddings driven
directly by the true label.

3

TABLE I
EXAMPLE OF THE FIRST BEHAVIOR EVENTS IN A FILE

File Event
createfile
virtualalloc
virtualalloc
getmodulehandle
getmodulefilename

III. DATA

The event sequences that we analyze in this paper are
generated by a modified version of the Microsoft production
anti-malware engine which logs the system API calls made
by a portable executable (PE) file (e.g., .exe, .dll). All of
the PE files in our dataset are written for the Microsoft
Windows operating system. To generate the data, we analyzed
a large set of malicious and benign files by scanning them
with the anti-malware engine and collected the emulation logs
corresponding to each file. During the data collection, the
malware did not have internet access to prevent the infection
of other computers. The logs were collected in August 2017,
and thus represent recent malware families. The length of the
original sequences varies from file to file and is determined
by heuristics employed by the anti-malware engine based on
the earlier behavior of the file.

Adversaries sometimes use polymorphism which uses dif-
ferent API calls to achieve the same goal. For example to
create a file, they may call ofstream.open in C++, fopen
in C, or the Windows user mode CreateFile function. From
kernel mode in Windows, they may call the ZwCreateFile
or NtCreateFile to create a file. To handle polymorphism,
multiple API calls can be mapped to the same high-level event,
and the total number of high-level events in our data is 156.
The first five events in a sample file are shown in Table I.
In addition, each file is assigned a label 𝜏 ∈ {0, 1} where 1
indicates that file is malware, and a benign file has a label of
0.

The files were randomly selected from our incoming pro-
duction streams of files to be analyzed. In order to be included
in this dataset, files were selected from a larger collection
according to the following criteria. First, we only included a
single file instance for each distinct event sequence. Second we
discarded any file sequences which had multiple labels: we did
not include any files with the same event sequence, but labeled
as both malware and benign. Third, we discarded any files
with less than 50 events. The original dataset thus obtained
includes the results of emulating 634,249 files which is then
randomly split into separate training, validation, and test
datasets including 443,974, 63,425, and 126,850, respectively.
Distribution over labels in these datasets corresponds to 75%
malicious samples, and 25% benign samples.

In order to use these sequences with our model, we first
create a vocabulary of the 156 event IDs and then translate
the event sequences into our vocabulary space. Each learning
batch therefore consists of sequences over the 156 vocabulary
space, resulting in a three-dimensional tensor for the batch

input. The input dimensions specify the batch size, sequence
length, and event embedding dimension, respectively.

IV. SYSTEM DESIGN

As discussed previously, our Neural Malware Detection
models learn by using the emulation event sequences and
are trained in an end-to-end fashion where the loss gradient
flows directly from the final label. Our objective with these
sequences is to detect the presence of potential events and
their sequential correlation with other events causing the ma-
licious action. These events can be both grouped or scattered
throughout the sequence. They are not necessarily consecutive,
but are ordered in most cases. Therefore, both presence and
order play an important role in this detection. In this section,
we discuss our learning models in detail. We also comment
on certain limitations of our fixed-length models and present
a model that can operate efficiently over sequences of any
length.

A. Building Blocks

We begin with a short review of the basic units forming our
models. In particular, we use LSTM recurrent neural networks
to capture the sequential data. In our extension models, we also
use CNNs to extract significant event occurrences within the
entire length of the long sequences. Throughout the models,
we also use the concept of one-dimensional max pooling. This
property helps reduce the dimensionality within the model at
different steps and helps extract significant embeddings and
activation wherever required.

1) LSTM:: Long Short-Term Memory [1], [2] neural net-
works are a memory-based variant of Recurrent Neural Net-
works (RNNs) where each neuron is defined to be a gated
cell with memory. These networks are less vulnerable to
the vanishing or exploding gradient problems [21], [22] and
operate by maintaining both a hidden state and memory at each
time step. This capability of LSTMs has made them popular in
language models and sequential architectures. Among the dif-
ferent variants of the algorithm that are commonly employed,
we use the following equations for our implementation of the
LSTM in this paper.

i𝑡 = 𝜎(Wℎ𝑖 ∗ h𝑡−1 + W𝑥𝑖 ∗ 𝑥𝑡 + b𝑖)
f𝑡 = 𝜎(Wℎ 𝑓 ∗ h𝑡−1 + W𝑥 𝑓 ∗ 𝑥𝑡 + b 𝑓)
o𝑡 = 𝜎(Wℎ𝑜 ∗ h𝑡−1 + W𝑥𝑜 ∗ 𝑥𝑡 + b𝑜)
c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ tanh(Wℎ𝑐 ∗ h𝑡−1 + W𝑥𝑐 ∗ 𝑥𝑡 + b𝑐)
h𝑡 = o𝑡 ⊙ tanh(c𝑡)

(1)

where 𝜎 is the logistic sigmoid function, i𝑡 , f𝑡 , o𝑡 , c𝑡 are
the input gate, forget gate, output gate and cell activation,
respectively. Wℎ (·) are the recurrent weight matrices for each
gate, W𝑥 (·) are the input weight matrices per gate, and b(·) are
the biases for each gate. At each timestep 𝑡, the network takes
vector 𝑥𝑡 as input, updates the cell memory c𝑡 , and provides a
hidden state h𝑡 . The input vector 𝑥𝑡 can be the representation
of the input in any format such as a one-hot encoding or a
dense embedding. Function ⊙ represents the pairwise product
between two vectors.

4

LSTMs are often used in deep models by stacking multiple
layers on top of each other. Stacked-LSTMs [23] allow deeper
learning of the structures where each layer gets an embedding
from a lower layer while traversing across the timesteps of the
sequence.

2) CNN:: Convolutional Neural Networks [13] are ex-
tremely powerful models often used in the space of computer
vision [14], [15]. Compared to the LSTMs, CNNs are faster
and more efficient architectures which use smaller kernels
that are trained at different locations within the input data.
In images, this refers to training smaller blocks within an
entire image with the same set of weights instead of using
a larger weight tensor for the complete image size. Similarly
for one-dimensional data like sentences, CNNs traverse over
smaller chunks of the input and perform convolutions across
each chunk while updating the smaller weight kernel. Re-
cently, CNNs have also shown success on sequential learning
problems [16], [17] and continue to be explored in this new
space.

3) Max Pooling:: Pooling operations are often used in
CNNs [24], [25] to reduce dimensionality and extract signifi-
cant features in deeper models. Max pooling can also be used
with one-dimensional sequences for the extraction of higher
activations. On a sequence, max pooling extracts a single
vector with maximum activations across each dimension.

B. End-to-End Models

In order to learn from the emulation sequences directly
using a target label of malicious behavior, we present our
end-to-end models below. Given an input event sequence 𝐸 of
length 𝑇 timesteps which consists of events 𝑒𝑡 at each time-
step 𝑡 in the sequence and a known truth label 𝜏, we need to
predict the probability 𝑝𝑚 of sequence 𝐸 being malicious. In
terms of the data under investigation, these models are required
to perform two crucial tasks. The first task is the detection of
potential events that can lead to a malicious action, and the
second is the sequential linkage of events which combine to
represent a malicious action. Since these individual events are
standard system commands, the mere occurrence of an event
within the sequence cannot be used to predict malware. Our
initial model designs are inspired by the language model and
classifier-based malware detection models presented in [11],
[12].

1) Direct Sequence Learning: The Direct Sequence Learn-
ing model (DSL) is our most basic end-to-end architecture.
This model relies on the capability of the LSTMs to learn
sequences and capture relevant information within the last
activation. This model uses LSTMs as the sequence learning
mechanism, which helps convert an entire sequence into an
embedding by using only the last activation from the LSTM.
This activation is then passed through a regular dense layer
for learning the derived representation. We produce the final
activation using a logistic sigmoid layer on top which pro-
vides the probability of the input sequence being malicious.

Formally, the DSL model is defined as:

ℎ𝐿 = LSTM(𝐸) [𝑇]
ℎ𝐶𝐿 = RELU(𝑊𝐿 ∗ ℎ𝐿)
pm = 𝜎(𝑊𝐷 ∗ ℎ𝐶𝐿)

(2)

where ℎ𝐿 is the hidden state activation from the LSTM at
the last timestep 𝑇 , and ℎ𝐶𝐿 is the activation derived from a
fully connected RELU neural network layer. pm is the final
probability of sequence 𝐸 being malicious, derived through a
final logistic sigmoid layer 𝜎. 𝑊𝐿 is the weight matrix for
the RELU layer, and 𝑊𝐷 is the weight matrix for the final
sigmoid layer which generates the output probability.

2) LSTM and Max Pooling: While DSL is able to translate
the sequence into a single vector embedding, it is optimized to
predict the last activation. The structure of our event sequence
is similar to a sentence in a language model, where the objec-
tive of the RNN is to predict the next word in the sequence.
Therefore, the last activation from the LSTM is best trained for
predicting the representation of the next event and might not
be of strong assistance in our objective of finding malicious
event sequences. In [12], the authors have used an LSTM
and Max Pooling for capturing events from the sequence.
Using a similar LSTM and Max Pooling (LAMP) concept
in our models, we perform a temporal max pooling over the
resulting LSTM sequence. While in [12], the language model
is independently trained using a recurrent neural network,
we tie the training of the LSTM with the complete model
similar to [19]. The LAMP model, therefore, first learns the
representation for the input sequence events, next performs
a temporal max pooling operation on the sequential hidden
states to create a final sequence embedding, and then proceeds
with one or more neural network layers to learn the output
probability. Formally, the LAMP implementation is defined
as:

𝐻𝐿 = LSTM(𝐸)
ℎ𝐿 = MAXPOOL1D(𝐻𝐿)
ℎ𝐶𝐿 = RELU(𝑊𝐿 ∗ ℎ𝐿)
pm = 𝜎(𝑊𝐷 ∗ ℎ𝐶𝐿)

(3)

where 𝐻𝐿 is the complete sequential output returned by the
LSTM, and MAXPOOL1D is the temporal max pooling layer
that extracts the final embedding ℎ𝐿 from 𝐻𝐿 .

3) Auxiliary-Output Language Learning: The Auxiliary-
Output Language Learning model (AOLL) is a regularized
extension of LAMP, built to assist gradient flow in the
complete model. Both LAMP and DSL train the LSTM layers
directly from the loss gradient using the final target label.
We believe, that while this objective helps direct a specific
gradient flow throughout lower layers of the model, it can
be assisted by an additional loss in order to address the
sequential nature of the data. Models presented in [11], [12]
train a language model over the input sequences where the
RNN, at each timestep, is trained to predict the next event
in the sequence. In order to incorporate such a goal within
the end-to-end learning model, we use two objectives in our
AOLL model. We learn the probability 𝑝𝑚 in the same way as
presented in LAMP. In addition to this, the AOLL model also

5

obtains an auxiliary output from the LSTM layer in the form
of its final activation. We use this output to predict the next
event within the sequence, leveraging the sequential learning
properties of LSTMs. The complete model is now trained with
two objectives, and two loss functions, each of which generates
a gradient flow within the model that is used to update the
weights. Formally, AOLL is defined as:

𝐻𝐿 = LSTM(𝐸)
ℎ𝐿 = MAXPOOL1D(𝐻𝐿)
ℎ𝐶𝐿 = RELU(𝑊𝐿 ∗ ℎ𝐿)
𝜅L [𝑡] = softmax(𝑊𝜅 ∗ 𝐻𝐿 [𝑡]) ∀𝑡 ∈ [0, 𝑇 − 1]
pm = 𝜎(𝑊𝐷 ∗ ℎ𝐶𝐿)

(4)

where 𝜅L is a softmax output for each timestep of the sequence
providing the probability over the entire vocabulary 𝑉 . At
each timestep 𝑡, 𝜅L [𝑡] ∈ R𝑉 is defined as a vector of size
𝑉 representing an output probability distribution for each
possible event. This measure is aligned with the objective of
the language model to predict the next word (event) in the
input sequence.

As mentioned above, the AOLL model uses two objective
functions and therefore requires two loss functions. For the
three models (DSL, LAMP, and AOLL) defined above, we use
Log Loss as our loss function. For determining the probability
𝑝𝑚, we use a loss in the form of binary cross-entropy. For
the stepwise outputs 𝜅L in AOLL, we use categorical cross-
entropy as the loss function when predicting the next event
in the sequence. For all three models, with prediction 𝑝𝑚 and
known target label 𝜏, we measure the final loss L as

L = LOGLOSS(pm, 𝜏). (5)

For AOLL, with predictions 𝜅L and events 𝑒𝑡 in the event
sequence 𝐸 for timestep 𝑡, we measure an auxiliary loss L𝑎𝑢𝑥

as

L𝑎𝑢𝑥 = LOGLOSS(𝜅L [𝑡], 𝑒𝑡+1) ∀𝑡 ∈ [0, 𝑇 − 1] . (6)

C. Model Limitations

The models defined above are all trained end-to-end using
a known target label and input event sequences only. A
significant strength of these models is their ability to learn
the sequence embeddings, that are critical informants of the
malicious behavior in the sequence caused by the consecutive
or sequential occurrence of certain events. While the use of
the LSTM provides us with the ability to use variable-length
sequences, it often becomes computationally very expensive
to train as the lengths of the sequences increase. Generally in
sequence learning, it is often common to cut the sequences up
to a certain prescribed length and then use those fixed-length
subsequences for training. In non end-to-end models, it is even
possible to train the sequences on a certain sequence length
and then use a different length for further representation when
used with deeper models. However these solutions are still
limited by the computation and memory capacities.

In language model-based applications, capturing a limited
length of the input sequence can often yield a sufficient
representation of the complete sequence. However in the case

of detection within a longer sequence, our objective is to find
all the events that can lead to a malicious action, and they can
be separated by very long distances within the entire sequence.
For instance, consider a malicious activity that requires events
𝑣𝑎, 𝑣𝑏, and 𝑣𝑐 ∈ 𝑉 to happen sequentially but does not need
them to occur consecutively. This event sequence, therefore,
can incorporate a large number of random events 𝑣𝑟1 . . . 𝑣𝑟𝑛
between 𝑣𝑎 and 𝑣𝑏, and 𝑣𝑏 and 𝑣𝑐, respectively. An opti-
mal system needs to detect the presence of these malicious
events and generate an appropriate activation on detecting
their sequential occurrence. If the number of random events
𝑛 increases drastically, the model can lose the context of
the presence of 𝑣𝑎 by the time it reaches 𝑣𝑏. One approach
to retain distant event occurrences is by using Bidirectional
LSTMs [23], [26], but in very long sequences this becomes
even more computationally expensive for the end-to-end model
to train.

Another problem with limited-length sequences in this case
is that malware can often be written as a long series of
legitimate benign events followed by malicious events much
later in the sequence (i.e., file). Limiting the length of such
sequences provides potentially benign sequences to the system
with a malicious label. Therefore, for training on limited
length, we need to filter data for prevention against such
cases, leading to the loss of data. When given a very large
dataset with malicious events occurring within the smaller-
length sequences, a model can be trained well. However,
limiting the length of sequences adds a vulnerability to the
model for the detection of malware. It is therefore essential
for a model to capture the entire length of the sequences in
order to find the events located at larger distances and still
maintain their sequential order.

D. Convoluted Partitioning of Long Sequences

In order to capture both, the presence of events, and their
sequential relationship in very long sequences, we use the
Convoluted Partitioning of Long Sequences (CPoLS) approach
introduced in [19] for detecting malicious JavaScript and
VBScript. A similar approach is presented in [27] where
the authors performed a static analysis on the chunked PE
file byte sequence. The implementation adopted in [27] uses
the last hidden output from the LSTM. However based on
our experimental results with RNNs and LSTMs, temporal
max pooling often performs significantly better than using the
last hidden state when performing event detection within a
sequence. We believe that this model approach applies well to
our problem of malware detection since the length of PE event
sequences can be extremely long. In our CPoLS models, we
are able to learn end-to-end models from the entire length
of very long sequences while maintaining their order. We
formalize the adaptation of the CPoLS model in Algorithm 1.

For an input event sequence 𝐸 , we first split it into a chun-
ked sequence 𝐶 = [𝑐1, 𝑐2, 𝑐3, . . .], where 𝐸 = 𝑐1 |𝑐2 |𝑐3 | . . .
(′ |′ denotes the concatenation operation), using Algorithm 2.
Since 𝐸 itself is a sequence, subsequences 𝑐𝑖 ∈ 𝐶 are ordered
by index. This operation increases the dimensionality of the
batch input tensor from three to four dimensions. We now treat

6

Algorithm 1 CONVOLUTED PARTITIONING OF LONG SE-
QUENCES

Input: Sequence 𝐸 , Chunk Size 𝑠

𝐶 = CHUNKIFY(𝐸 , 𝑠)
𝐻𝑅𝐶 = RECURRENTCONVOLUTIONS(𝐶)
𝐸 ′ = [ℎ𝑅𝐶1, ℎ𝑅𝐶2, ℎ𝑅𝐶3 . . .]
pm = LAMP(𝐸 ′)
return pm

each chunk 𝑐𝑖 as an element of our top-level sequence which
is passed through a time distributed layer that sequentially
processes each chunk. Within each of these recurrent pro-
cesses, we perform convolutional learning on the subsequence
within that timestep as shown in Algorithm 3. By performing
convolutions, our goal is to extract the presence of significant
events from each subsequence and to reduce the overall
dimensionality of the problem. Therefore, each chunk 𝑐𝑖 , in
the recurrent processing, is passed through a one-dimensional,
convolutional neural network (CONV1D), and then through
a time distributed max pooling layer (MAXPOOL1D). This
allows for us to reduce the size of each chunk, and therefore,
of the entire sequence. We recombine the outputs of each
chunk to form a new sequence representing activations from
the recurrent convolutions. We then pass this derived sequence
through the LSTM of our end-to-end models. Due to the usage
of the derived sequences, we cannot use the AOLL model with
CPoLS.

Algorithm 2 CHUNKIFY

Input: Sequence 𝐸 , Chunk Size 𝑠

Initialize 𝑐ℎ𝑢𝑛𝑘𝑠 = []
for 𝑖 = 0 to 𝑙𝑒𝑛(𝐸)/𝑠 do

APPEND(𝐸 [𝑠 ∗ 𝑖 : (𝑠 + 1) ∗ 𝑖 − 1], 𝑐ℎ𝑢𝑛𝑘𝑠)
end for
return 𝑐ℎ𝑢𝑛𝑘𝑠

V. EXPERIMENTS AND RESULTS

We performed an extensive evaluation of the models pre-
sented above with our emulation sequence dataset. We imple-
mented these models on the Tensorflow [28] platform using
the Keras [29] library. Both models and data access operations
were written using the Python programming language. Our
models were trained on a cluster of Nvidia Tesla K40m GPUs.

For each model, we ran several iterations to identify the best
hyper-parameter settings. We use the LSTM as our recurrent
neural network module in each model. The hidden dimension
of 1500 was used for the LSTM in each model. For our
vocabulary of size 156, we used an embedding dimension of
size 114 throughout the models. The RELU layer used in our
models had a hidden dimension of 64. The CNN layer used
in the CPoLS model performed one-dimensional convolutions
on a window of 10 items, with a stride size of 5. The CNNs
used a channel size of 114, which is equal to the embedding
dimension, in order to consider each dimension within the
computation. Each model was run for 15 epochs on 443,974
training samples, and validated on 63,425 samples after each

Algorithm 3 RECURRENTCONVOLUTIONS

Input: Chunks 𝐶

for 𝑐𝑘 in 𝐶 do
ℎ𝐶𝑘 = CONV1D(𝑐𝑘)
ℎ𝑀𝑃𝑘 = MAXPOOL1D(ℎ𝐶𝑘)

end for
𝐻𝑀𝑃 = [ℎ𝑀𝑃1, ℎ𝑀𝑃2, ℎ𝑀𝑃3, . . .]
return 𝐻𝑀𝑃

epoch. For the limited-length models, we used sequences of
length 256. We used the ADAM optimizer [30] with a learning
rate of 0.001. For the limited-length models, we used a mini-
batch size of 64. For full-length models, we used a mini-batch
size of 32. The results presented in this section use 126,850 test
samples on our trained models. For each model, we present the
average results over multiple iterations using the best settings.

We present results across three significant metrics. We first
discuss the average result accuracies derived by our models
in predicting the probability 𝑝𝑚 of a file being malicious.
Accuracies provide us with an overall strength of the Neural
Malware Detection systems in detecting malicious actions
within a sequence. As we discussed earlier, this problem is
more critical and sensitive to false positives due to the nature
of the underlying systems. Therefore, we also compare our
models using the Receiver Operating Characteristic (ROC)
plots, in order to get a finer sense of each model’s performance.
Along with the ROC plot, we also measure the True Positive
Rate (TPR) at fine scale in order to learn the performance of
our system. We therefore, measure the TPR at a False Positive
Rate (FPR) of 1%. Table II summarizes the accuracies and
TPRs across models and configurations. Figure 1 presents the
ROC plots for the best performing version of each model.
We have limited the x-axis scale on the ROC plots to a finer
scale of 2% on the FPR. By visualizing at an FPR of 2%,
we evaluate each model’s performance at a much finer scale
than possible through accuracies. Even with minor variation in
accuracies, it can be observed that the CPoLS model operating
on full-length sequences performs much better at a very low
FPRs as well, maximizing the effective area under the curve.

As can be seen, CPoLS not only builds resilience against
long sequences, but also performs significantly better than
the other models on our dataset. These neural models re-
spond aptly to the criticality of our problem. The model
which combines a CNN followed by an LSTM proposed by
Kolosnjaji, et al. [18] performs better than DSL in terms of
average accuracy, but it has a significantly lower performance
in terms of the TPR@1% and the ROC curve. Our experiments
with AOLL display comparable performance to LAMP [11],
[12], highlighting the ability of end-to-end models to identify
optimal gradient flow even when using multiple loss functions,
but also signifying the effectiveness of a single loss function
when optimizing the entire model end-to-end.

In our experiments with full-length models, we also tested
different chunk sizes and observed that the selection of chunk
size did not significantly affect the results but did increase
training speeds. We experimented with different sizes between
32 and 256, but could not obtain significant accuracy variation.

7

TABLE II
TEST ACCURACIES (%) AND TPRS (%) AT AN FPR = 1% FOR ALL THE

MODELS

MODEL NAME ACCURACY TPR@1%

DSL 𝑛𝐿𝑆𝑇𝑀=1 0.881 68.44
Kolosnjaji et al. 0.932 59.96
AoLL 𝑛𝐿𝑆𝑇𝑀=1 0.922 68.14
AoLL 𝑛𝐿𝑆𝑇𝑀=2 0.932 67.40
LaMP 𝑛𝐿𝑆𝑇𝑀=1 0.947 76.50
LaMP 𝑛𝐿𝑆𝑇𝑀=2 0.951 76.27
CPoLS 𝑛𝐿𝑆𝑇𝑀=1 0.956 83.50

This might be due to the fact that each of these chunk sizes
were sufficient to capture important event occurrence and can
be subject to further evaluation in the future. The speed of
training, however, improved with larger chunks going under
convolutions, hence lowering the sequence lengths for the
LSTMs at the following stages.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

False Positive Rate (%)

0

10

20

30

40

50

60

70

80

90

100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

D SL

A oLL

A oLL

LaM P

LaM P

C PoLS

Fig. 1. Receiver operating characteristic plots for the models described above

VI. DISCUSSION

It is important to consider evasion when considering ma-
chine learning models for security applications. Papernot, et
al. [31] recently proposed an adversarial attack for recurrent
neural networks. Recurrent models are more challenging to
attack than deep neural networks due their recurrent nature. To
attack a recurrent structure, the authors first unfold (i.e., unroll)
the recurrent model into essentially a deep neural network
with many layers. Next they compute the unfolded Jacobian
and perturbations to craft adversarial sequences which can be
used to trick the RNN into predicting the incorrect class.

To the best of our knowledge, no adversarial defenses have
been proposed for recurrent neural networks. Thus, defenses
against adversarial attacks directed at recurrent models, such
as those proposed in this paper, are an open research topic.

Besides malware detection, the models presented in this
paper also provide potential approaches for handling extremely
large sequences in general. Neural network-based models

are applied to a large number of applications across several
domains. Depending on the nature of the respective data, the
length of sequences in these domains can play a significant
role in the model’s learning capability. While we presented our
models for malware detection, our architecture, in particular is
not tied to the underlying problem and can be generalized for
a broader set of problems. Learning on sequences involving
event detection, event prediction or any related objective can
benefit from our models in efficiently using the entire length
of the sequences. We believe, with certain domain-specific
modifications, and with more generalization within the overall
architecture, our models can help perform lossless sequential
learning irrespective of data lengths.

VII. RELATED WORK

The persistent increase in the growth and distribution of
malware has called for the alarming need of detection and
prevention. Anti-virus and anti-malware systems developed
over time have performed in-depth analysis of malicious
software families, have developed signatures, tagging methods
and several other mechanisms to tackle this ever growing
problem. Exploration of using machine learning in this space
has witnessed the use of both traditional and deep learning
models. Support Vector Machines (SVM) have been incorpo-
rated into this task by [32]. Hidden Markov Models have been
explored by [33]. Assistance in signature generation using
deep learning has been demonstrated in [34] where they used
Deep Belief Networks to generate malware signatures that
could then be passed through classification models. Entering
more into the space of neural network-based models, language
structure within emulated sequences of a malicious executable
have been utilized by [11], [12]. They have built RNN-based
language models to learn the relationship between the event
structure and malware.

The CPoLS model used in this paper is based on [19]
and uses CNNs over sequential structures. While popularly
used in image and graphical data, CNNs have also been used
by [16], [17], where they have shown exceptional results in
the space of language models by constructing Sequence-to-
Sequence models using CNNs. In malware classification, [18]
and [35] also demonstrated the use of CNNs along with
sequential learning. In their models for malware classification,
they demonstrated the ability to classify among malicious
families from a dataset of malicious files. Among other
applications, an interesting mix of RNN and CNNs has been
presented by [36] by first using RNNs for feature extraction
and generating image representations from files which are
classified further by CNNs.

VIII. CONCLUSIONS

Neural Malware Detection models, as presented in this
paper, help combat the challenge of detecting malware from
extremely long API call sequences generated through an anti-
malware engine. While helping to resolve a major concern in
computer security, our models also address the critical and
sensitive nature of this problem.

8

Through this paper, we presented several end-to-end models
that use combinations of LSTM recurrent neural networks and
CNNs. Our models learn entirely from event sequences while
learning event embeddings within the deep models themselves.
Through our full-length based models, we presented efficient
methods to perform lossless sequence learning on extremely
long sequences in detection tasks. Through our training and
results on the largest malware dataset of 634,249 sequences,
we demonstrated the significance of using entire sequence
lengths when performing malware detection.

In our AOLL model, we have also demonstrated the use
of multiple objectives and losses in an end-to-end setting
that utilize additional gradient flows within the model while
maximizing the primary objective of predicting the probabil-
ity of maliciousness. Through CPoLS, we demonstrated the
advantages of using Convolutional Neural Networks for event
detection in association with LSTMs for sequential binding.
Through our adaptation of the CHUNKIFY approach, we
presented an effective method for the partioning of extremely
long sequences in learning tasks without losing the sequential
nature at any stage of the model.

In summary, this paper targets the core of the malware
operation style and learns a Neural Malware Detection model
from it, which can be used directly with emulators, can be
embedded within anti-malware systems to serve as a detection
operator, can efficiently handle long sequences, and is resilient
to variations and loops emerging in malware over time.

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1–32, 1997.

[2] F. A. Gers Jj, U. Schmidhuber, and F. Cummins, “Learning to
Forget: Continual Prediction with LSTM,” 1999. [Online]. Available:
www.idsia.ch

[3] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” pp. 6645–6649, May 2013.

[4] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by
Jointly Learning to Align and Translate,” sep 2014. [Online]. Available:
http://arxiv.org/abs/1409.0473

[5] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning
with Neural Networks.” [Online]. Available: https://papers.nips.cc/
paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

[6] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,”
pp. 2692–2700, 2015. [Online]. Available: http://papers.nips.cc/paper/
5866-pointer-networks.pdf

[7] A. Graves, G. Wayne, and I. Danihelka, “Neural Turing Machines,” oct
2014. [Online]. Available: http://arxiv.org/abs/1410.5401

[8] A. Graves, G. Wayne, and E. al., “Hybrid computing using a neural
network with dynamic external memory,” Nature (in Press), vol. 538,
no. 1, 2016.

[9] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption
generation with visual attention,” vol. 37, pp. 2048–2057, 07–09 Jul
2015. [Online]. Available: http://proceedings.mlr.press/v37/xuc15.html

[10] J. Weston, S. Chopra, and A. Bordes, “Memory Networks,” oct 2014.
[Online]. Available: http://arxiv.org/abs/1410.3916

[11] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), April 2015, pp. 1916–1920.

[12] B. Athiwaratkun and J. W. Stokes, “Malware classification with lstm
and gru language models and a character-level cnn,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), March 2017, pp. 2482–2486.

[13] Y. LeCun and Y. Bengio, “Convolutional networks for images speech
and time series,” 1995.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[16] J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin, “A Convolutional
Encoder Model for Neural Machine Translation,” nov 2016. [Online].
Available: http://arxiv.org/abs/1611.02344

[17] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional Sequence to Sequence Learning,” may 2017. [Online].
Available: http://arxiv.org/abs/1705.03122

[18] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in Australasian Joint
Conference on Artificial Intelligence. Springer International Publishing,
2016, pp. 137–149.

[19] J. W. Stokes, R. Agrawal, and G. McDonald, “Neural classification of
malicious scripts: A study with javascript and vbscript,” CoRR, 2018.

[20] E. Bott, “Defective mcafee update causes worldwide meltdown of
xp pcs,” Apr 2010. [Online]. Available: http://www.zdnet.com/article/
defective-mcafee-update-causes-worldwide-meltdown-of-xp-pcs/

[21] S. Hochreiter, “The vanishing gradient problem during learning
recurrent neural nets and problem solutions,” Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., vol. 6, no. 2, pp. 107–116, Apr. 1998.
[Online]. Available: http://dx.doi.org/10.1142/S0218488598000094

[22] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, Mar 1994.

[23] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech recognition
with Deep Bidirectional LSTM,” in 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding. IEEE, dec 2013, pp. 273–278.
[Online]. Available: http://ieeexplore.ieee.org/document/6707742/

[24] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations
in convolutional architectures for object recognition,” Artificial Neural
Networks–ICANN 2010, pp. 92–101, 2010.

[25] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-
huber, “Flexible, high performance convolutional neural networks for
image classification,” in Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence - Volume Volume Two, ser.
IJCAI’11. AAAI Press, 2011, pp. 1237–1242.

[26] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to Construct
Deep Recurrent Neural Networks,” dec 2013. [Online]. Available:
http://arxiv.org/abs/1312.6026

[27] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware Detection by Eating a Whole EXE,” ArXiv e-
prints, Oct. 2017.

[28] M. Abadi, A. Agarwal, P. Barham et al., “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: http://tensorflow.org/

[29] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[30] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

dec 2014. [Online]. Available: http://arxiv.org/abs/1412.6980
[31] N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Crafting adver-

sarial input sequences for recurrent neural networks,” 2016.
[32] J. Pfoh, C. Schneider, and C. Eckert, Leveraging String Kernels for

Malware Detection. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 206–219.

[33] S. Attaluri, S. McGhee, and M. Stamp, “Profile hidden markov
models and metamorphic virus detection,” Journal in Computer
Virology, vol. 5, no. 2, pp. 151–169, May 2009. [Online]. Available:
https://doi.org/10.1007/s11416-008-0105-1

[34] O. E. David and N. S. Netanyahu, “DeepSign: Deep Learning for
Automatic Malware Signature Generation and Classification *.”

[35] B. Kolosnjaji, G. Eraisha, G. Webster, A. Zarras, and C. Eckert,
“Empowering convolutional networks for malware classification and
analysis,” in 2017 International Joint Conference on Neural Networks
(IJCNN). IEEE, may 2017, pp. 3838–3845.

[36] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi,
“Malware detection with deep neural network using process behavior,”
in 2016 IEEE 40th Annual Computer Software and Applications Con-
ference (COMPSAC), vol. 2, June 2016, pp. 577–582.

