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Abstract—Antimalware products are a key component in
detecting malware attacks, and their engines typically execute
unknown programs in a sandbox prior to running them on the
native operating system. Files cannot be scanned indefinitely so
the engine employs heuristics to determine when to halt execu-
tion. Previous research has investigated analyzing the sequence
of system calls generated during this emulation process to predict
if an unknown file is malicious, but these models often require
the emulation to be stopped after executing a fixed number of
events from the beginning of the file. Also, these classifiers are
not accurate enough to halt emulation in the middle of the file
on their own. In this paper, we propose a novel algorithm which
overcomes this limitation and learns the best time to halt the
file’s execution based on deep reinforcement learning (DRL).
Because the new DRL-based system continues to emulate the
unknown file until it can make a confident decision to stop, it
prevents attackers from avoiding detection by initiating malicious
activity after a fixed number of system calls. Results show that the
proposed malware execution control model automatically halts
emulation for 91.3% of the files earlier than heuristics employed
by the engine. Furthermore, classifying the files at that time
significantly improves the classifier’s accuracy. This new model
improves the true positive rate by 61.5%, at a false positive rate
of 1%, compared to the best baseline classifier.

Index Terms—Malware detection, Deep reinforcement learning

I. INTRODUCTION

Malicious software, or malware, continues to be a serious
threat to computer users. As a first line of defense, users
and organizations often rely on commercial antimalware (i.e.,
antivirus) products to detect malware being installed on their
computers, and the antimalware engine is a key component
of these malware detection systems. Prior to allowing an
unknown file to be executed on the native operating system,
the antimalware engine often tries to detect malware using
two main approaches. First, static analysis employs malware
“signatures” (i.e., rules) to scan the unknown file to search for
malicious byte sequences in the file without execution. Next,
the engine utilizes one form of dynamic analysis called emu-
lation to execute the file in a lightweight sandbox. Lightweight
emulation does not analyze the unknown file in a full virtual
machine (VM). Instead, the emulator mimics the response of
a typical operating system. If the engine can detect malicious
behavior during emulation, the antimalware system blocks the
file from being executed on the native operating system and

alerts the user that the file they are trying to install is malicious.
As a result, the user’s computer is not infected.

Previous dynamic analysis research has focused on analyz-
ing the sequence of system application programming interface
(API) calls made by the unknown file during emulation.
Typically, the authors propose a recurrent, deep learning model
to discriminate between the behavior of malicious and benign
files. Pascanu et al. [1] used a recurrent neural network (RNN),
or an echo state network (ESN), in combination with either a
logistic regression classifier or a multi-layer perceptron (MLP)
to detect malware. Athiwaratkun et al. [2] replaced the RNN
with a long short-term memory (LSTM) recurrent network
or a gated recurrent unit (GRU), and they also proposed a
character-level convolutional neural network (CNN) to predict
if an unknown file is malicious. A CNN followed by an
LSTM is proposed for this task by Kolosnjaji, et al. [3]. In
these solutions, the authors consider a fixed-length input buffer
containing the events executed from the beginning of the file.
The length of this pre-defined window, ν, varies depending
on the study with ν ∈ {50, 100, 200, 65000}. More recently,
Agrawal, et al. [4] proposed a model using a combination of
a CNN and an LSTM which processes the entire file in order
to classify its contents.

In this paper, we propose a novel algorithm, based on deep
reinforcement learning (DRL), to learn the best time to halt
the engine’s emulation to predict whether the unknown file is
malicious or benign. DRL has been used previously to create
adversarial samples to attack a malware classifier [5]. Initially,
we tried to train a classifier to halt emulation based on the
previous tf (e.g., 200) behavioral events, but the accuracy
of this classifier was not sufficient to effectively halt the
emulation. To the best of our knowledge, this is the first paper
to propose using deep reinforcement learning to protect users
from malware. This DRL-based neural network, combined
with an event classifier and a file classifier, learns whether
to halt emulation after enough state information has been
observed or to continue emulation if more events are needed
to make a highly confident prediction. Unlike previously
proposed solutions, the DRL algorithm allows the engine to
decide when to stop emulation on a per file basis.

Results from analyzing a collection of malware and benign
files demonstrates a significant improvement in the early
stopping of the execution of the file. The DRL-based system



halts execution of 91.3% of the files earlier than heuristics used
by the production antimalware engine. When the execution
is stopped by the DRL model, the true positive detection
rate exhibits a relative increase of 61.5% at a false positive
rate of 1.0% compared to the best performing baseline model
proposed in [2]. This paper makes the following contributions:

• We propose a deep reinforcement learning-based system
which predicts when to stop emulating an unknown file.

• We implement the system and evaluate its performance
on a collection of 75 thousand files.

• We demonstrate that the proposed system significantly
outperforms several recent neural malware classification
systems.

II. CONVENTIONAL REINFORCEMENT LEARNING

Before considering the proposed neural malware control
model, we first provide a brief overview of the standard
definitions for conventional reinforcement learning (RL), as
introduced by [6]. Conventional reinforcement learning is
normally formulated as a stochastic Markov Decision Pro-
cess (MDP). There are five main components in a standard
reinforcement learning structure including agents, states, ac-
tions, rewards and policies. Each plays a different role in
formulating the RL environment. A general interpretation is
that reinforcement learning is a technique to help an agent
learn what is the best action and policy to take such that
its expected rewards/penalties can be maximized/minimized
under a stochastic MDP environment [6].

We next provide definitions of the elements in conventional
reinforcement learning.
1. Agent and States (st). An agent interacts with its environ-
ment by moving from the current state st at time t to another
state st+1 at time t+1. Each state is normally defined by the
useful information from the interaction between an agent and
its environment.
2. Actions (at). By taking an action at at state st, an agent can
transfer from its current state to any of its connected neighbors
at its next state st+1 with different probabilities, since the
agent can only arrive at one of its neighbors at t+ 1.
3. Rewards (rt). The agent receives reward rt at time t. The
discounted reward Rt is defined as Rt =

∑∞
t=t0

γt−t0rt where
γ is the discount factor with {0 ≤ γ ≤ 1}, and t0 indicates
the starting time step. After reaching a state, an agent obtains
the expected discounted reward (E[Rt|at, st]) by considering
the policies from the current state st to its neighbors st+1

and so on. The expected discounted reward includes both the
pre-defined reward at state st and the accumulated discounted
rewards to be obtained in the future by taking a specific action
at.
4. Policy (π). A policy π is a mapping from states to actions.
There are three main types of reinforcement learning: value-
based, policy gradient and actor-critic. In this study, we focus
on a value-based algorithm called Q-learning given the small
action space in our problem. The optimal action-value function
in conventional Q-learning is defined as Q∗, which is the
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Fig. 1: Deep reinforcement learning system for halting the
execution of an unknown file and improved malware classifi-
cation.

maximum expected reward obtained by selecting the best
policy π at state st, Q∗(st, at) = maxπ E[Rt|at, st, π].

III. NEURAL MALWARE CONTROL AND IMPROVED FILE
CLASSIFICATION

In this paper, we propose a new deep reinforcement
learning-based system to control the execution of an unknown
file by an antimalware engine. The output of this DRL-based
system can also be used to obtain an improved prediction of
whether the file is malicious or benign. An overview of the
proposed system is shown in Figure 1, and it has three main
components: file emulation, the execution control model and
the improved inference model.

The antimalware engine includes a sandbox which aims to
instrument the runtime behavior of an unknown, executable
file before it is allowed to run on the native operating system.
The unknown file is first emulated by the sandbox, and this
generates a sequence of behavioral file events, et ∈ E. These
events typically include operations related to processes, files,
networking, and registry behavior. Most of the events are
associated with APIs invoked during execution, but other be-
havioral events, such as unexpected instructions or constructs,
are also captured.

The execution control model processes E and is respon-
sible for controlling the file’s execution. If the execution
control model can make a confident decision that the file is
either malicious or benign, the execution is halted. As it is
received, each individual event et is first processed by an event
classifier which makes a prediction, ye,t, indicating whether
the most recent event history includes malicious activity or
not. Initially, we tried halting the emulation based solely on
the event classifier’s output, but the classifier’s accuracy was
not sufficient to accomplish this task and motivated the need
for deep reinforcement learning. Even though it is a weak
signal, ye,t is used to construct a reward signal for the DRL
model, which then produces the execution control signal, ht,
indicating if the file execution should be halted or allowed to
continue.

The primary purpose of the DRL model is to better control
the file’s execution. However, we also found that it can be
used to significantly improve the overall classification of



an unknown file. This improved prediction, yRL,t, which
indicates whether the file is malicious or benign, is generated
by the improved inference model. The improved inference
model boosts the weak predictions from the event classifier,
ye,t, based on ht and the output of a baseline file classifier
which offers an initial estimate of the probability, yf , that
the file is malicious based on the initial tf (e.g., 200) events
generated by the file. We next provide details on each of these
three main system blocks.

IV. FILE EMULATION AND EVENTS

As described previously, the file events are generated by
emulation in the antimalware engine. Attackers often use
polymorphic tactics to avoid detection. In polymorphism, they
rearrange or rewrite their code in different ways which appear
to be different but accomplish the same task. To deal with
polymorphism, our antimalware engine maps multiple low-
level API calls into a single high-level event. For example,
the attacker may use a user mode API (CreateFile), a kernel
mode API (ZwCreateFile), or the C++ API (ofstream::open)
to create a file. All of these events are mapped into the
same high-level FileCreate event. In our data, the antimalware
engine produced 114 high-level behavior events representing
many more individual low-level API calls. An example of the
first five events includes CreateFile, VirtualAlloc, VirtualAlloc,
GetModuleHandle, and GetModuleFilename.

In general, the malware tends to contain more events than
the benign files. For this data, more than 50% of malware files
in the test set contain more than 1000 events, but less than 20%
of the benign files are longer than 1000 events. Furthermore,
malware tends to contain long loops after executing the first
several events. Benign files, on the otherhand, tend to exhibit
more random behavior. While they do contain loops, these files
tend to be shorter and less repetitive. Ideally, our execution
control model can leverage these patterns to decide when to
stop the emulator and perform the evaluation.

V. DEEP EXECUTION CONTROL

The details of the execution control model in Figure 1 are
depicted in Figure 2. The input is et, and the outputs are ht and
ye,t in both figures. As each event is received, it is inserted into
the event queue, a first in, first out (FIFO) queue. The event
classifier then predicts ye,t for the most recent subsequence
stored in the event queue. Since the output layer of the event
classifier is a sigmoid function, ye,t is the probability that the
most recent subsequence of behavioral events corresponds to
malicious activity.

The DRL model depends upon its states, actions, and
rewards. The state, st, includes information related to all the
events received up to and including the most recent event.
For each et, the event classifier’s prediction ye,t is used as
part of the DRL model’s reward function, rt. The actions for
the DRL model include continuing and halting file execution.
Based in part on ye,t and st, the DRL model generates separate
Q values which are the estimated expected discounted rewards
associated with these actions. The Q value signals are noisy
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Fig. 2: Details of the execution control model in Figure 1. In
both figures, the input is et, and the outputs are ht and ye,t.

and cannot be used directly. The action state model filters the
Q values to generate the halting signal ht, which is then used
by the antimalware engine to stop the file’s execution.

Event Classification. The recurrent model structure which
is used for the event classifier, and later for the baseline file
classifier, is shown in Figure 3. For each new event, the event
classifier makes a prediction, ye,t, that the behavior associated
with the most recent tf behavioral events is malicious. This
event subsequence is stored in the event queue.

Each event in the event queue is input to an embedding
layer, and the result is then input to a recurrent layer. We
use a recurrent neural network (RNN) for the recurrent layer.
As proposed in [1], the recurrent layer’s hidden state is input
to a max-pool layer which is able to better detect malicious
activity within the subsequence. We next construct a sparse
binary, feature vector consisting of a bag of words (BOW)
representation of the event subsequence (114), the final hidden
state of the recurrent layer which is the recurrent layer’s
embedding (1500), and the output of the max-pool layer which
is the max-pool embedding (1500). This feature vector is then
input to a shallow neural network in the classifier layer. The
output layer of the neural network is a sigmoid function.
Thus, ye,t is the probability that this most recent event history
contains malicious activity.

Deep Reinforcement Learning. We next present a deep
reinforcement learning model to control the antimalware en-
gine’s execution of an unknown file. The first task is to choose
the type of reinforcement learning model for our problem.
The main feature in our problem is a very large state space
together with a small action space consisting of two actions
A ∈ {continue, halt}. Considering the small action space, we
prefer a value-based reinforcement learning technique which
compares the value functions of the actions directly, instead of
learning another policy estimator to find the best policy as in
policy gradient [7], [8] or actor-critic-based approaches [9]–
[11].

The action-value function, Q∗(st, at) =
maxπ E[Rt|at, st, π], is the expected reward of taking
action at at state st following the policy π. To calculate
this value using a conventional value-based approach, it is
necessary to store all the Q values in a table for all the
state-action pairs encountered during training, which is not
feasible if the state space or action space is large.
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One approach to overcome this difficulty is by training a
nonlinear approximator Q(st, at|θt), such as a deep neural
network, to estimate Q∗(st, at) at time step t. However, these
types of nonlinear estimators tend to be unstable in practical
applications since convergence is not guaranteed. To address
this issue, [12], [13] recently proposed using a replay buffer
in the deep Q network (DQN) which demonstrates better
convergence properties. Since our problem has a very large
state space, we also use a DQN as our DRL model structure
in this paper.

In a DQN-based DRL structure, the deep neural network
action-value function estimator Q(st, at|θt) is normally de-
fined at state st as Q(st, at|θt) ∼ Q∗(st, at) by taking the state
st as the input of the neural network, where θt represents the
neural network parameters. We next describe the state design,
action design, reward design, and training for the DRL model
using experience replay.

Design of States. The DRL model’s state contains three
parts: the position (i.e., index) of the current event in the file
ρt, the current event ID, and the histogram of all the previous
events. The current event position in the file will be used later
to define the reward rt for the deep reinforcement learning
model. We initially tried to use a one-hot encoding of the event
ID, but found that using the event ID directly provides slightly
better performance while reducing the size of the state. The
event ID histogram captures the history of the events which
have been observed so far.

Design of Actions. The agent (i.e., antimalware engine) can
perform two types of actions at: continue, which is labeled as
C, and halt, labeled as H . The action indicates whether the
agent should continue or halt the execution of the file. In our
deep reinforcement learning model, the selected action at for
state st is inferred from the output of the neural network. As
shown in the Figure 2, the outputs of the deep neural network
are the estimated action value function QC = Q∗(st, at =

C) = maxπ E[Rt|at = C, st, π] for action C at state st and
QH = Q∗(st, at = H) = maxπ E[Rt|at = H, st, π] for
action H at state st. By comparing the two Q∗(st, at) values
for actions H and C, the action with the larger Q value is
selected and performed.

Design of Rewards. The reward rt at each state st is
designed based on two criteria:
1. We prefer for the DRL network to learn to halt emulation
as quickly as possible. Therefore, shorter emulation sequence
lengths are assigned a higher reward and longer sequence
lengths are given a smaller reward.
2. The closer an event prediction is to the true label of the
file, the larger the reward should be given at that state.

Based on the above two criteria, the reward is defined as

rt = (0.5− |ye,t − L|)e−βρt (1)

where ye,t is the event-based prediction generated by the most
recent tf = 200 events, and L ∈ {0, 1} is defined as the
true label of the training file. The decay factor β is chosen
experimentally, and ρt is the position of current event in the
file.

DRL Training. To train this neural network-based es-
timator, we use an l2 loss function defined as L(θt) =
Est [(Q̂(st, at|θt) − Q(st, at|θt))2] where Q̂(st, at|θt) is an
estimate of Q(st, at|θt). Q̂(st, at|θt) is computed using the
current state reward rt together with its neighbors’ estima-
tions from the neural network in an iterative manner, i.e.,
Q̂(st, at|θt) = rt + γmaxat+1

Q(st+1, at+1|θt) where st+1

are the neighbors of st, and at+1 are the corresponding actions
generated by the neural network.

In [12], experience replay is used to train the DRL model.
Experience replay helps to alleviate the potential issues of non-
stationary distributions and correlated data and is performed
by randomly sampling the state pairs. Whenever one stochastic
step is taken by the agent, the current state st, obtained
reward rt, action taken at and next state st+1 are combined as
one agent experience set (st,rt,at,st+1), and pushed into the
replay memory queue M . Throughout the learning process, the
reinforcement learning updates are performed in minibatches
of size BRL, drawing from the replay memory randomly. The
algorithm for training the DRL model using experience replay
is provided in Algorithm 1.

We tested several different stochastic gradient descent opti-
mization methods for training the DRL model and found that
adadelta [14] performed best. Furthermore, the convergence of
DRL is not always guaranteed. To help with the convergence,
the sum of rt + γ should be within the range of [0,1]. It is
important to note that we first train the event classifier, as
well as the baseline file classifier in the improved inference
model, in isolation prior to training the DRL model – the
system is not trained in an end-to-end fashion. Thus, ye,t in
the reward rt is generated by the pre-trained event classifier,
and the reward function has the same value for the same event
sequence. Otherwise, the DRL’s reward function can become
non-stationary.



Algorithm 1 Deep Reinforcement Learning Training

1: Epochs: N ← 2000
2: Minibatch Size: BRL ← 50
3: Decay Factor: β ← 0.01
4: Initialize a replay memory M with size µ← 50000, DRL

model with 3 layers
5: for n=1 → N do
6: Time step in state space: t← 0
7: Randomly select an initial state st
8: while !End of File do
9: Q(st, at|θt)← DRL(st)

10: a∗t=argmaxat Q(st, at|θt)
11: Perform action a∗t , generating next state st+1

12: Push tuple (st, rt, a
∗
t , st+1) into replay memory M

13: for b=1 → BRL do
14: Randomly select a tuple m from M
15: st ← m(0), rt ← m(1), st+1 ← m(3)
16: Q(st, at|θt)← DRL(st)
17: Q(st+1, at+1|θt)← DRL(st+1)
18: Input ye,t from Event Classifier
19: rt ← (0.5− |ye,t − L|)× e−βρt
20: Update Q̂(st, at|θt)
21: Update the network by minimizing loss L(θt)
22: end for
23: t← t+ 1
24: end while
25: end for
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Fig. 4: Details of the improved file inference model in Figure 1.
The inputs are et, ye,t, and ht, and the output is yRL,t in both
figures.

Action State Model. The final block in Figure 2 is the
action state model which generates the halting signal ht. The
Q value signal is noisy and cannot be used directly to compute
ht. The halting signal is a binary signal which is initialized to
have a value of 0 and remains 0 for each et until QH > QC for
K consecutive events. At that point, the value of ht transitions
to 1 and continues to maintain that value if any additional
events are processed.

VI. IMPROVED INFERENCE

The purpose of the improved inference model in Figure 1
is used to generate a better DRL-based prediction, yRL,t, of
whether or not an unknown file is malicious. The details of
improved inference model are depicted in Figure 4. This model
has three inputs, namely the events generated by the file (et),
the most recent event predictions (ye,t), and the execution
control signal (ht). The most recent K values of ye,t are stored
in the event prediction queue, which is another FIFO queue.
After ht signals that the file execution has been halted, the
improved file score model evaluates the event predictions in
the queue to generate yRL,t.

The individual ye,t values, stored in the event prediction
queue, are noisy and can be difficult to analyze. In some
cases, only setting yRL,t to be the most recent ye,t value
can lead to an incorrect prediction that the file is malicious.
To overcome this issue, the improved inference model also
employs an additional baseline file classifier to improve the
accuracy of yRL,t. To accomplish this task, the initial tf (e.g.,
200) events generated by the file are stored in the initial events
buffer, and these are processed by the baseline file classifier
to produce an initial prediction that the file is malicious, yf .

Baseline File Classifier. The baseline file classifier also
utilizes the structure shown in Figure 3 and follows [2]. The
input event subsequence in Figure 3 corresponds to the first tf
events for each file stored in the initial events buffer (Figure 4).
Here, tf is the same value which denotes the length of the
event classifier’s input event queue. An LSTM is used for the
recurrent layer, and the classifier layer uses logistic regression
for the file’s prediction yf . Similar to the event classifier, yf is
the initial estimate of the probability that the file is malicious
based on the initial behavior of the file.

Improved File Score. We can now combine yf with the
ye,t history stored in the event prediction queue to compute
the final improved file classifier score, yRL,t. Since the initial
estimates of the ye,t are noisy, we process the most recent K
event predictions from the event prediction queue. Formally if
ht is equal to 1,

yRL,t = max{ye,t−K+1, · · · , ye,t} if yf > 0.5

yRL,t = min{ye,t−K+1, · · · , ye,t} if yf ≤ 0.5
(2)

where ye,i is the event classifier’s prediction at step i, and
yRL,t is the improved inference model’s output, i.e., the
prediction probability that the unknown file is malicious.

VII. DATA

The original data for our research was collected by scan-
ning a large collection of Windows Portable Executable (PE)
files with the production Microsoft antimalware engine. The
behavioral events are logged using a special version of the
antimalware engine. As noted earlier, the engine records 114
event types, et ∈ {0, · · · , 113}, ranging from file IO, registry
APIs, networking APIs, thread or process creation and control,
inter-process communication, timing, and debugging APIs.

The labels utilized in this study correspond to production
labels used by our antimalware product partners to train



malware classifiers that identify malware targeting Windows
computers. The files are labeled with L ∈ {0, 1} where 1
corresponds to a malware file and 0 indicates that the file is
benign. Benign files are identified as those which are known
to be safe. For example, these might be files belonging to
software products which are purchased by users (e.g. Microsoft
Office) or downloaded from the internet from sites which
are known to be legitimate (e.g. Adobe Acrobat Reader,
Google Chrome). Other benign files are determined to be
safe by professional analysts. Labels for malware files are
also generated by manual inspection by professional analysts.
In addition, all unknown files received by the company are
scanned by over 20 additional production antimalware engines.
If eight or more of these anti-malware engines detect that a
file is malicious, these files will also be determined to be
malicious.

We collected a dataset of 75 thousand files which had
been evaluated by the antimalware engine. These files were
equally split between the malware and benign classes. First,
we discarded any files whose event sequences were shared
between these two classes and which contained less than 50
events. Furthermore, we ensured that all the event sequences
in the datasets were distinct. This requirement ensured that we
did not overfit to one particular set of events. We then split
the overall dataset into separate training, validation, and test
sets with 50, 10, and 15 thousand files, respectively. Again,
we maintained an equal split between the two classes for each
of the individual datasets. The event and file classifiers were
trained with the training and validation sets, while the DRL-
model was trained with 2000 files from the training set. The
results presented below are based on evaluating the model on
the hold out test set.

VIII. EXPERIMENTAL RESULTS

We next present the results for the proposed neural malware
control model. We first describe the experimental setup. We
then evaluate how quickly the DRL-based model halts the
execution of a file. Finally, we compare the final prediction
that the file is malicious or benign to the results from several
baseline file classifiers.
Experimental Setup. For reproducibility, we provide the setup
that was used to train the DRL-based neural malware control
system and the baseline file classifiers described below. We
implemented the proposed neural malware control model using
Keras [15] with Theano [16] as the backend deep learning
framework. Several hyperparameters were tuned on smaller
datasets. The decay factor in the DRL model’s reward function
is β = 0.01. The DRL model uses 3 hidden layers with a size
of hhidden = 128 and is trained with a minibatch size BRL =
50. The replay memory is initialized with a size µ = 50000.
The experiments were performed on an Intel Xeon CPU E5-
1620, 3.50 GHZ with 16 GB of RAM. The GPU is an NVIDIA
GeForce GTX 980 Ti.
How does the DRL-based model’s stopping performance
compare to the antimalware engine’s heuristics? The files in
our dataset were collected by a production antimalware engine,

and the number of events recorded for each file represents
the performance of the heuristics employed by the engine to
halt emulation. Thus, by measuring how often the DRL-based
model halts execution prior to reaching the end of the file,
we can compare the performance between our model and the
engine’s heuristics. In cases where the DRL model reaches the
end of the file without halting execution, we can infer that the
proposed model was not confident enough to make a decision,
and the DRL based-model would have continued to execute
the file.

The results of this evaluation are presented in Table I
and depend on two values: the number of training files (i.e.,
epochs) N and the number of consecutive events where
QH > QC denoted by K. The fraction of files where the
DRL-model halts execution before the end of the file, α, is
computed as:

α =
(Total number of early halted files)

(Total number of files)
. (3)

We make two observations from the results presented in the
table. First, the percentage of files whose execution is halted
by the DRL model earlier than engine’s heuristics continues
to increase as the number of training file N increases. Better
training allows the engine to halt execution earlier. Second,
the percentage of files which are halted early decreases with
K. The value of K is a proxy for the DRL model’s confidence
in the decision to halt the file’s execution. It is not surprising
that the execution of fewer files is halted early as we require
more confidence (i.e., higher value of K) in the decision. Even
so, the results show that over 91% of the files in the test
set are halted early compared to the engine’s heuristics after
training with only 2000 files. This indicates that the engine’s
heuristics may be overly cautious when emulating a file. In
addition, requiring less time for scanning an individual file
leads to better performance when scanning all the files on the
hard drive.

K=10 K=15 K=20
N=30 71.5% 64.1% 58.3%
N=200 82.9% 75.2% 69.2%
N=2000 98.2% 95.1% 91.3%

TABLE I: The fraction of files, α, in % where emulation is
halted earlier by the proposed deep reinforcement learning
model compared to heuristics used by the antimalware engine.

In Table I, we report that with K = 20 and N = 2000,
the execution control model halts the execution of 91.3% of
the files earlier than the heuristics used by the antimalware
engine. In Figure 5, we provide the histogram indicating the
distribution of the percentage of events which were executed
before the execution control model halted the file’s emulation
compared to the number of the events in the file which was
determined by the engine’s heuristics. This figure indicates that
a file’s emulation is halted much earlier than the heuristics for
the majority of the files.
Can DRL improve file classification? While the results in
Table I indicate that emulation of the majority of the files



Fig. 5: Histogram of the percentage of behavioral events which
are executed before the execution control model halts emula-
tion compared to the number of executed events determined
by the engine’s heuristics.
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Fig. 6: Performance of several recently proposed recurrent
models for the baseline file classifier.

0 1 2 3
False Positive Rate (%)

0

20

40

60

80

Tr
ue

 P
os

iti
ve

 R
at

e 
(%

)

DRL based Model-K=10
DRL based Model-K=15
DRL based Model-K=20
LR-LSTM-MAX
LR-GRU-ESN-MAX

Fig. 7: Comparison between the proposed DRL-based
model for K ∈ {10, 15, 20} and the best two baseline
file classifiers.

can be stopped earlier than the heuristics employed in the
engine, it is important to understand how early halting affects
the detection performance. To measure this, we first compute
the receiver operating characteristic (ROC) curves for a range
of models in Figure 6 for the baseline file classifier depicted
in Figure 3. This analysis allows us to evaluate the best
baseline file classifiers for our data based on recently published
research. The models include LSTM [2], RNN [1], gated recur-
rent unit (GRU) [2], convolutional neural network (CNN) [3]
and a simple, single hidden layer, feedforward neural network.
We also include the echo state network (ESN) counterparts
for the LSTM and GRU. All models use logistic regression
(LR) for the classifier, because these slightly outperformed a
shallow neural network for this dataset. All models use max-

pooling as shown in Figure 3. These results indicate that the
performance of none of the models we investigated dominated
all of the other models. In particular, the ESN version of the
GRU offers better performance and low false positive rates
(FPRs) while the LSTM outperforms all other models above
an FPR ≥ 1.2%.

We next compare the two best performing baseline file
classifiers to the proposed DRL-based models for K ∈
{10, 15, 20} in Figure 7. The figure clearly indicates that all
the DRL-based models offer significantly better performance
compared to the baseline file classifiers. In particular, the DRL-
based model with K = 20 offers a relative improvement
of 61.5% for the true positive rate (TPR) at an FPR of 1%
compared to the GRU-ESN-based baseline file classifier. The
relative improvement of the TPR is 65.7% at an FPR of 1%
for the LSTM.

IX. RELATED WORK

Deep Reinforcement Learning. Conventional reinforce-
ment learning has been widely studied in the fields of machine
learning and system control for over three decades [6], [17]–
[20]. Recently, Mnih, et al. [12], [13] successfully applied deep
neural network-based Q-learning (DQN) to playing a series of
Atari games, by using a replay buffer to improve the system’s
convergence. Also, Silver, et al. [21], [22] developed novel
algorithms, by applying reinforcement learning to Monte Carlo
tree search, to play the Go game and beat human Go masters.
Progress has also been made in improving value-based [23],
[24], policy gradient [25]–[28], and actor-critic [11], [29]
deep reinforcement learning algorithms, in order to find better
policies more efficiently and to deal with a continuous action
space.

More recently, there are many deep neural network-based
reinforcement learning approaches proposed either using
value-based, policy-based or actor-critic-based structures as
in [21], [30]–[32].

Deep Learning for Malware Classification. A number of
authors have proposed using DNNs for malware classification
tasks. Dahl, et al. [33] first investigated the use of a DNN
for malware classification for dynamic analysis. Huang and
Stokes [34] proposed a DNN with multitask learning for
dynamic analysis where the first task was binary (i.e., malware
versus benign) and the second task was malware family clas-
sification. A separate line of research has investigated using
recurrent models for malware classification. Pascanu, et al. [1]
first proposed using recurrent neural networks and echo state
networks for classifying malware sequences. Athiwaratkun and
Stokes [2] instead proposed an LSTM, a GRU, and a character-
level CNN for the sequence classification. Kolosnjaji, et al. [3]
used a CNN followed by an LSTM for this task.

X. CONCLUSION

We present a novel, neural malware control model which
learns when to halt the execution of an unknown file based
on deep reinforcement learning. This model is the first to
use deep reinforcement learning to protect customers from



malware. Fast scanning is an important feature for users
when installing software, reading emails with attachments,
and searching a hard drive for files which were maliciously
dropped during a drive-by download. Our results indicate that
the proposed model halts execution earlier than a production
antimalware engine for more than 91% of the files in the
test set. More importantly, we show a relative improvement
of over 61% in the true positive detection rate of malware at
a false positive rate of 1% compared to a number of baseline
malware classifiers reported in the literature. Our model allows
the detection to be delayed until later in the processing of the
file compared to these existing solutions. Thus, the proposed
model offers significantly better protection with less delay.

REFERENCES

[1] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2015, pp. 1916–1920.

[2] B. Athiwaratkun and J. W. Stokes, “Malware classification with lstm
and gru language models and a character-level cnn,” in International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2017, pp. 2482–2486.

[3] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in Australasian Joint
Conference on Artificial Intelligence. Springer International Publishing,
2016, pp. 137–149.

[4] R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj, “Robust neural
malware detection models for emulation sequence learning,” in Pro-
ceedings of the IEEE Military Communications Conference (MILCOM).
IEEE, 2018.

[5] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, “Learning
to evade static pe machine learning malware models via reinforcement
learning,” arXiv preprint arXiv:1801.08917, 2018.

[6] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning.
MIT Press Cambridge, 1998, vol. 135.

[7] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International Conference
on Machine Learning (ICML), 2014, pp. 387–395.

[8] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research
(JMLR), vol. 17, no. 1, pp. 1334–1373, 2016.
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