
TEXCEPTION: A CHARACTER/WORD-LEVEL DEEP LEARNING MODEL FOR PHISHING
URL DETECTION

Farid Tajaddodianfar Jack W. Stokes Arun Gururajan

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052 USA

ABSTRACT
Phishing is the starting point for many cyberattacks that threaten
the confidentiality, availability and integrity of enterprises’ and
consumers’ data. The URL of a web page that hosts the attack
provides a rich source of information to determine the maliciousness
of the web server. In this work, we propose a novel deep learning
architecture, Texception, that takes a URL as input and predicts
whether it belongs to a phishing attack. Architecturally, Texception
uses both character-level and word-level information from the
incoming URL and does not depend on manually crafted features
or feature engineering. This makes it different from classical
approaches. In addition, Texception benefits from multiple parallel
convolutional layers and can grow deeper or wider. We show
that this flexibility enables Texception to generalize better for new
URLs. Our results on production data show that Texception is able
to significantly outperform a traditional text classification method
by increasing the true positive rate by 126.7% at an extremely low
false positive rate (0.01%) which is crucial for our model’s healthy
operation at internet scale.

Index Terms— Phishing, Detection, Character-Level, Deep
Learning, Word Embedding

1. INTRODUCTION

Many computer security-related services need to verify that a URL
(Uniform Resource Locator) does not provide the location of a
malicious web page on the internet [1]. In this paper, we specifically
focus on leveraging URLs for detecting phishing attacks. Phishing
can be broadly defined as a type of social engineering attack via
electronic channels that tricks humans into performing certain
actions for the attacker’s benefit [2]. These actions could include
harvesting passwords or bank account numbers which are then sold
on the black market. To this end, we present a novel character-
level deep learning model which learns to detect malicious URLs
associated with these phishing web sites.

There are many signals that one could consider as features for
models that detect phishing pages including the requestor’s URL,
static HTML content, DOM of the page, and screenshot of the page.
Most of these raw signals need a significant level of transformation
in order to be leveraged as useful features, which often requires a
non-trivial amount of time to be spent on feature engineering.

In this work, we show that by using a novel character-level deep
learning approach, we can eliminate the feature engineering step,
while significantly improving the efficacy of the phishing detection
classifier. To demonstrate this, we utilize the URL as the only input
feature. Two main reasons for classifying URLs include:

1. In a real-time phishing detection scenario, where minimal
latency is of paramount importance, URLs are often the
primary signals that can be captured. This approach does not

preclude the possibility of using other signals, but usually
the minimum bar that gives the most information is almost
always the requested URL.

2. The other scenario where the URL is useful is for detecting
“potential” phishing domains. These are essentially newly
registered domains that have not yet hosted malicious content,
but have a high probability of doing so in the near future. In
this scenario where the domain is not hosting any content, the
only signal that we can leverage is the URL.

Character-Level Deep Learning. Character-level deep learning
text classification has been previously studied in the literature [3,
4, 5]. Le, et al. [6] proposed URLNet as a deep learning model for
malicious URL classification. In this work, we describe Texception
as a character/word-level deep learning model for text classification
that inputs a raw URL as text and performs a binary classification.
In Section 5, we describe how Texception differs from previous
character-level models.
Contextual Embedding. Contextual embedding approaches, such
as Word2Vec [7] and FastText [8, 9], have widely been used in recent
years in the field of Natural Language Processing (NLP). The basic
idea in contextual embedding is to construct a vocabulary of words
in a text corpus and assign a low-dimensional randomly initialized
dense vector to each word. During training, which is unsupervised,
each sentence from the corpus is tokenized to extract words, and the
algorithm targets either predicting the surrounding words for a given
word (i.e., skipgram architecture) or predicting a single word given
its surrounding words or context (i.e., Continuous Bag of Words or
CBOW architecture). Vectors assigned to each word are adjusted
to optimize for this task, and the trained embedding vectors are
expected to reflect contextual relationships. After training, words
that have similar meaning are closely located in the embedding
space. In many NLP applications, word embeddings trained on large
text corpuses are used as inputs for the downstream model. In our
phishing detection problem, however, such pre-trained vectors are
not useful because words that appear in our corpus of URLs are
not similar to any language corpus. Therefore, we train the word
embeddings on our training dataset and use them as input to the
Texception model. This is discussed in the Section 3.

In Section 4, we describe our experiments and results which
illustrate the superiority of the proposed approach at extremely low
false positive rates (FPRs). To be able to function at internet scale,
we operate our models at an FPR = 0.01% at which the best
Texception model provides an increase of 126.7% in the true positive
rate (TPR) compared to a traditional baseline model.

The remainder of this paper is organized as follows. Section 2
describes the experimental data that was used as the reference to
train our proposed model as well as the other baseline ML and deep
learning models. Section 3 expounds on the proposed modeling
approach. This is followed by a section on numerical evaluation,



where the proposed approach is compared against a set of baseline
models. Finally, Sections 5 and 6 provide the related works in this
area and concluding remarks, respectively.

2. EXPERIMENTAL DATA

We use Microsoft’s anonymized browsing telemetry data which
is primarily comprised of the URL and a binary phishing grade
(phishing/benign). The grades serve as the labels for training and
evaluating our model. We retrospectively collected six weeks of
data, out of which we use the first two weeks as the training set.
Due to severe class imbalance (only 0.01% positive class), we
downsample the benign class to improve the training set’s balance to
5% for the positive class in total. The resulting training set contains
1.7M samples from which we sample 20% of the instances based on
stratified sampling to construct a validation set with the same class
balance. We also use a test set containing 20M instances sampled
directly from the production pipeline without any preprocessing to
serve as a representative set of the real production data.

3. TEXCEPTION MODEL

Texception uses both character and word embeddings that are
known to be more efficient than traditional Bag-Of-Words (BOW)
techniques. In this section, we first explain training the FastText
contextual word embeddings as well as building the character
embeddings. Next, we describe the individual Texception block
and the overall architecture.

3.1. FastText Word Embedding

We employ the FastText model to generate the contextual word
embeddings. One advantage of FastText compared to Word2Vec is
that the FastText model treats each word as a bag of its n-grams.
This enables FastText to generate embedding vectors for previously
unseen words. We use the GenSim [10] Python package for the
FastText model implementation. To train the model, we ignore
labels and tokenize each URL based on special characters (including
“.?/-_\=%&@+;”) to obtain words. We also include these special
characters in the model vocabulary as suggested in [6]. The FastText
model builds a vocabulary of words that are observed more than
a user-defined minimum in the training set. During training, each
URL is treated as a sentence after tokenization. We setup a skip-
gram architecture with the parameters given in Table 1.

3.2. Character Embedding

For the character embeddings, we first build an alphabet of all
characters which occur in the training set and then assign a lookup
table that takes the integer index of each character in the alphabet and
returns a low-dimensional dense vector which is trained during the
network training. Two additional indexes are reserved for unknown
characters and the empty space. We also need to define the maximum
number of characters to be processed in each URL. Longer URLs
are trimmed and shorter ones are padded with the empty character to
meet this maximum value. With these hyperparameter settings, each
input URL is mapped to a dense matrix of character embeddings.

3.3. Texception Block

By intuition, a 1D convolution of filter size N on the sequence
of character embeddings is similar to extracting an N -gram from

m s n . c o m

1
D

 C
o

n
v

o
lu
�

o
n

a
l 

o
u

tp
u

t 
ch

a
n

n
e

l 
si

ze

1D 
Convolu�on

m
sn

sn
.

n
.c

.c
o

co
m

C
h

a
ra

ct
e

r
e

m
b

e
d

d
in

g
d

im
e

n
si

o
n

M

Fig. 1. 1D convolutional operator with filter size 3 and no zero-
padding applied to a sequence of character embeddings. This
operation maps every set of 3 characters to a new vector with size
equal to the output channel size of the operator. Intuitively, this is
similar to extracting 3-grams.

input text (Figure 1). Inspired by Inception [11], which received
state-of-the-art performance in image processing, we propose using
a Texception module as the main building block. Our intuition is
that multiple convolutional layers in parallel each with different
filter sizes should be able to better capture text patterns compared to
multiple consecutive layers with a fixed filter size. First, we define
a basic block as shown in Figure 2 where F and D are the list of
filter sizes and dilation sizes for the parallel 1D convolutional layers.
Each convolutional layer is followed by Batch Normalization, Max
Pooling, and ReLu blocks.

3.4. Full Texception Model

The full model is comprised of two parallel paths, one for extracting
character-level information and the other for working with word-
level information. The character-level path first converts a raw URL
into a dense matrix of character embedding vectors as described in
Section 3.2. Next, multiple layers of Texception blocks are applied
followed by an Adaptive Max Pooling layer [12] that limits the
dimension of the last Texception block’s output to a user defined
value.

We define a word-embedding layer that returns a dense vector
for each word in the FastText model vocabulary, reserving one index
for unknown words and one for empty words. We can choose to
initialize the word embeddings by the weights from the FastText
model and freeze them so that those weights do not change during
the training. Other options are to initialize words with FastText
weights and allow them to adjust during training, or simply not use
FastText weights and randomly initialize weights.

The word-level path first tokenizes the incoming URL using the
same regular expression (regex) key that has been used in building
the FastText model. Then, the list of words in the URL is matched
with the maximum word length, so that longer word lists are trimmed
and shorter ones are zero padded. This list then passes through the
word embedding layer to produce a sequence of word vectors which
is followed by multiple Texception blocks. The output of the word
path is also limited using an Adaptive Max Pooling operator.

Outputs from the character-level and word-level paths are
concatenated and input to multiple fully connected layers that



Conv1D, F = 2, D = 1
i = 32, o = 64

ReLu

Conv1D, F = 3, D = 1
i = 32, o = 64

Conv1D, F = 6, D = 1
i = 32, o = 64

Concatenate

Input

Sequence of o-dimensional vectors

Sequence of i-dimensional vectors

F = filter size
D = Dila�on
i = input channel
o= output channel
w = Max pool window

BN, Max
pool

BN, Max
pool

BN, Max
pool

ReLu ReLu

Fig. 2. Texeption Block. A list of filter sizes and dilation parameters
are provided to the block. The number of parallel layers equals the
number of filters times the number of dilations. Input and output
channel sizes are user defined. Numbers are given as example.

eventually produce a class probability. Layers with more nodes have
a larger dropout probability. Figure 3 displays a schematic of the full
Texception model. Note that users can choose multiple structures:
deeper networks with more consecutive Texception blocks, wider
networks with more parallel layers within the block, using words
with pre-trained FastText weights versus random weights or even
not using words. This framework provides users with sufficient
flexibility to experiment and find the best architecture.

4. NUMERICAL EVALUATION

In this section, we next evaluate the proposed Texception models
on the task of detecting malicious phishing URLs from the dataset
described in Section 2.
Setup. All models are trained using the PyTorch [13] deep learning
framework. A Binary Cross Entropy loss function along with a SGD
optimizer with momentum equal to 0.9 and learning rate initialized
at 0.01 are used. Training is performed for 30 epochs with the
minibatch size set to 128, and at the end of each epoch, validation
scores are obtained. A model with the best validation loss is returned
as the final model of each experiment. The learning rate is also
halved every 5 epochs.
Baselines. We also consider two baseline models for evaluating
the performance of Texception. The URLNet model [6] is also a
character-level CNN which was proposed for detecting malicious
URLs. We obtained the code for URLNet from the online repository
published by the authors and executed it on our data using its default
parameters. The other baseline is a Logistic Regression (LR) model
trained and cross-validated on the aforementioned training set and
evaluated on the same test set. The LR model is based on manually
crafted features, which is essentially a bag of character 4-grams
(including trigrams, bigrams and unigrams) of the URL. We also
restrict the vocabulary to 100K n-grams to avoid an extremely sparse
feature space to prevent overfitting. In addition, the training process
for the LR model includes a weighted combination of L1 and L2-
norm-based regularizers (Lasso and Shrinkage operators). With

Char embedding
Alphabet Size x Embedding Dim

Conv1D,
F = 1

ReLu

Concatenate

Input

ReLu ReLu

Conv1D,
F = 3

Conv1D,
F = 5

Conv1D,
F = 1

ReLu

Concatenate

Input

ReLu ReLu

Conv1D,
F = 3

Conv1D,
F = 5

Word embedding
Vocab. Size x Embedding Dim.

Adap�veMaxPool
Fixed output size

Adap�veMaxPool
Fixed output size

concatenate

Raw URL: “www.msn.com”

Fully connected, in = 1536,out = 1028, ReLu, DropOut(0.75)

Fully connected, in = 1028, out = 512, ReLu, DropOut(0.50)

in = 512, out = 128,ReLu, DropOut(0.25)

sig Class probability

Conv1D,
F = 2

BN, Max 

pool

ReLu

Concatenate

Input

ReLu ReLu

Conv1D,
F = 3

Conv1D,
F = 4

Conv1D,
F = 5

ReLu

Conv1D,
F = 5

Conv1D,
F = 2

ReLu

Concatenate

Input

ReLu ReLu

Conv1D,
F = 3

Conv1D,
F = 4

Conv1D,
F = 5

ReLu

Conv1D,
F = 5

BN, Max 

pool

BN, Max

pool

BN, Max

pool

BN, Max

pool
BN, Max

pool
BN, Max

pool

BN, Max

pool

BN, Max

pool
BN, Max

pool
BN, Max

pool

BN, Max

pool
BN, Max

pool

BN, Max

pool

Fig. 3. Texception model comprised of two layers of consecutive
Texception blocks. The character-level path uses filters of size 2,3,4,
and 5. In word path, filters of size 1,3, and 5 are used. All dilation
parameters are set to one.

Parameter value

Characters
Branch

embedding dimension 32
number of blocks 1

block filters [2,3,4,5]
Adaptive MaxPool output 32,32

maximum characters 1000

Words
Branch

embedding dimension 32
number of blocks 1

block filters [1,3,5]
Adaptive MaxPool output 32,16

maximum words 50

FastText
Model

minimum words to include 50
vocabulary size 120000

window size 7
n-grams 2-6

embedding dimension 32
epochs trained 30

Table 1. Hyperparameters used for experimentation.



Model TP
Rate (%)

Error
Rate (%)

Texception_character_only 31.2 0.37
Texception_words_random 47.95 0.28
Texception_FastText_Frozen 42.12 0.32
Texception_FastText_nonFrozen 45.83 0.30
Baseline_LR 21.15 0.42
Baseline_URLNet 12.3 0.48

Table 2. True Positive (TP) and Error rates on the test set measured
at fixed 0.01% False Positive (FP) rate.

Fig. 4. ROC curve obtained by scoring the trained models on the test
data set.

this setup, we use the regularizer weights as the hyperparameters,
and use the validation set to select the best hyperparameters. We
generate the results for LR on the test set using the best combination
of hyperparameters.
Performance Results. Figure 4 shows the ROC (Receiver Operating
Characteristic) curve obtained by scoring the trained models on the
test set. In practice, we have an extremely tight tolerance for the false
positive rate, and generally we choose our models to operate at an
FPR ≤ 0.01%. Figure 4 shows that all versions of the Texception
model are able to outperform the baselines at these very low FP
rates. Table 2 shows the true positive and error rates for all evaluated
models measured at a fixed FPR = 0.01%. The Texception model
that uses randomly initialized word weights yields a 47.95% TPR,
which is an increase of 126.7% over the TP rate of the baseline LR
model at the same FP rate.

More specifically, it is clear from Table 2 that the TP rate of the
Texception model with randomly initialized word weights (47.95%)
is a 53.7% increase compared to the version which uses only
character embeddings (31.2%). In addition, adjusting the pre-trained
word embeddings during training results in better performance.
Therefore, a Texception model with randomly initialized word
embeddings performs better than those with pre-trained FastText
embeddings. One explanation for this observation is that the
FastText model is trained to capture contextual similarity which is
different from the ultimate task of predicting the class probabilities.
In the presence of abundant labeled data, learning word embeddings
through the general training task better optimizes the embedding
weights for the classification task at hand.

5. RELATED WORK

Detecting phishing pages using URLs is an understudied problem,
but some previous work does exist. Our Texception model is most
closely related to the URLNet model proposed in [6]. However,
Texception is architecturally different from URLNet in two ways.
One main difference is that the Texception model benefits from
pretrained contextual word embeddings. The other difference is
that Texception uses multiple layers of the Texception block and
Adaptive Max Pooling to select the top features to retain at the end
of each layer.

Texception is one type of character-level CNN, and there are a
number of important works in this area [3, 4, 5]. The character-
level CNN was initially proposed by Zhang et al. [4]. Other
important character-level CNN models include [3, 5]. The most
interesting property of these models is that they are not dependent
on manually extracted features and are able to use raw text as
input to predict the class. Previous character-level CNN models
are mainly comprised of one or multiple layers of convolutional
layers with fixed filter size followed by several fully connected
layers. The use of word embeddings to improve the classification
task has also been reported [14]. Generally, it is expected that deeper
networks can capture more higher-level patterns resulting in better
learning capability [3]. Our attempts to replicate that approach for
URL-based phishing detection with character-level DNNs resulted
in over-parameterized deep models that were not able to beat our
baseline models. Texception, presented in this paper, differs from
the previous CNNs because it allows for parallel CNN layers. Also
Texception offers the ability to grow deeper or wider with the ability
to use contextual word embeddings as input.

6. CONCLUSIONS

In this work, we present a novel character-level neural network
for detecting phishing web pages. The Texception model learns
sequential patterns associated with URLs.

The results are quite promising on a real dataset collected by the
Microsoft SmartScreen service. The model outperforms previously
proposed deep learning models for detecting phishing web site
URLs. Most importantly, these results are obtained with severe
class imbalance which is often encountered by users in practice.
Therefore, we believe that Texception can provide significantly
improved protection against phishing attacks in the wild.

7. ACKNOWLEDGEMENT

The authors thank Christian Seifert and Geoff McDonald of Microsoft
for fruitful discussions.



8. REFERENCES

[1] D. Sahoo, C. Liu, and S. C. H. Hoi, “Malicious URL Detection
using Machine Learning: A Survey,” vol. 1, no. 1, pp. 1–37,
2017. [Online]. Available: http://arxiv.org/abs/1701.07179

[2] M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection:
A literature survey,” IEEE Communications Surveys and
Tutorials, vol. 15, no. 4, pp. 2091–2121, 2013.

[3] A. Conneau, H. Schwenk, Y. Le Cun, and
L. Barrault, “Very Deep Convolutional Networks for
Text Classification,” Tech. Rep., 2017. [Online]. Available:
https://arxiv.org/pdf/1606.01781.pdf

[4] X. Zhang, J. Zhao, and Y. Lecun, “Character-level
Convolutional Networks for Text,” pp. 1–9, 2015.

[5] X. Zhang and Y. Lecun, “Text Understanding from
Scratch,” Tech. Rep., 2016. [Online]. Available:
http://www.libreoffice.org/

[6] H. Le, Q. Pham, D. Sahoo, and S. C. H. Hoi, “URLNet:
Learning a URL Representation with Deep Learning for
Malicious URL Detection,” Tech. Rep., 2018. [Online].
Available: https://doi.org/10.475/123_4

[7] T. Mikolov, K. Chen, G. Corrado, and J. Dean,
“Distributed-Representations-of-Words-and-Phrases-and-
Their-Compositionality,” in Advances in neural information
processing systems, NIPS, 2013, pp. 3111–3119.

[8] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching
Word Vectors with Subword Information,” vol. 5, pp. 135–146,
2017.

[9] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag
of tricks for efficient text classification,” 15th Conference of
the European Chapter of the Association for Computational
Linguistics, EACL 2017 - Proceedings of Conference, vol. 2,
pp. 427–431, 2017.

[10] R. Rehurek and P. Sojka, “Software Framework for Topic
Modelling with Large Corpora,” Proceedings of LREC 2010
workshop New Challenges, 2004.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol.
07-12-June, pp. 1–9, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling
in Deep Convolutional Networks for Visual Recognition,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

[13] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer,
“Automatic differentiation in PyTorch,” in 31st Conference on
Neural Information Processing Systems (NIPS 2017), 2017.

[14] D. Hendler, S. Kels, and A. Rubin, “Detecting
Malicious PowerShell Scripts Using Contextual
Embeddings,” Tech. Rep., 2019. [Online]. Available:
https://www.powershellgallery.com/


