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Abstract - We present a software tool which efficiently computes
the error probability of a direct sequence, code division multi-
ple access (DS/CDMA) system. Several different system mod-
els are analyzed including random signature sequences with ideal
channels, deterministic signature sequences with ideal channels,
random signature sequences with slowly fading channels, and de-
terministic signature sequences with slowly fading channels. We
assume that the chips received from each of the multiple-access
interference (MAI) sources are synchronous with the chips from
a reference source. This provides an upper bound for an asyn-
chronous DS/CDMA system. Numerical contour integration of
the test statistic’s moment generating function (MGF) in the com-
plex plane is used to efficiently evaluate the error probabilities.

1 Introduction

The recent introduction of inexpensive chip sets designed to im-
plement DS/CDMA communication systems is allowing this tech-
nology to be implemented in many commercial products such as
digital cellular telephones, wireless local area networks, and re-
mote data collection devices. One of the main parameters to be
considered during the system design phase is the probability of
a bit error. Several results [1], [2], [3] have derived the average
probability of error by analyzing the noise introduced by MAI
sources which are asynchronous to the reference receiver. Due to
the asynchronous nature of the models used in the previous works,
the results are quite involved. The primary goal of this work is
to provide a comprehensive software tool which quickly computes
the probability of error for systems with either random or de-
terministic signature sequences and either ideal or slowly fading
channels. To achieve fast execution, we assume that the chips
received from each of the MAI sources are synchronous with the
chips received from the reference source. Under this assumption,
much of the complexity of the previous results can be minimized.

The technique used to efficiently evaluate the error probability is
based on numerical contour integration of the test statistic’s MGF
in the complex plane which we refer to as numerical contour inte-
gration (NCI). This method was used to compute the probability
of error resulting from intersymbol and cochannel interference [4]
as well as radar detection probabilities [5]. NCI is superior to
the characteristic function method proposed in [2] because it is
less susceptible to oscillations which can cause the trapezoidal
integration to converge slowly for a given error tolerance.

Another contribution of this work is to model the effects of a
slowly fading channel using a Padé approximation. The integral
which results from the expectation due to the random nature
of a slowly fading channel with random signature sequences is
replaced with a Padé approximation which matches the moments
of the distribution of the channel’s amplitude attenuation. In

this paper, results are derived and evaluated for a slowly fading
channel modeled by the Rayleigh distribution. The method is
easily extended to other fading distributions.

2 System Model

The baseband signal transmitted by the l-th DS/CDMA source
is

sl(t) = al

∞∑
k=−∞

il[k]hl(t− kT ) (1)

where al is the signal amplitude, il[k] ∈ {+1,−1} is the equally
likely, transmitted information bit, and hl(t) is the chip sequence
defined to be

hl(t) =

N−1∑
n=0

bl[n]p(t− nTc). (2)

The signature sequence, bl = [bl[0], ..., bl[N − 1]]T , bl[k] ∈
{+1,−1}, specifies the pseudo noise (PN) sequence employed by
the l-th transmitter to spread the bandwidth of the transmitted
signal. In this paper, the signal is transmitted using BPSK mod-
ulation. The chip waveform, p(t), is assumed to be zero outside of

the interval [0...Tc] and have normalized energy
∫ Tc

0
p2(t)dt = 1.

Each of the sources is transmitted through a channel modeled by
<{αle

jθl}. The amplitude attenuation introduced by the channel
from the l-th transmitter to the reference receiver is given by αl,
while θl represents the phase offset. Since θl = 0 for a synchronous
system, the received baseband signal is

r(t) = a0α0

∞∑
k=−∞

i0[k]h0(t− kT )

+

L∑
l=1

alαl

∞∑
k=−∞

il[k]hl(t− kT − jlTc) + n(t). (3)

The first term represents the desired signal, the second term rep-
resents the MAI noise produced by the remaining L DS/CDMA
transmitters in the area, and the last term represents additive
white Gaussian noise with zero mean and variance σ2

n. The code
offset, jl, indicates the relative offset between the start of the l-th
MAI transmitter chip sequence and that of the reference trans-
mitter. Although the synchronous assumption requires the indi-
vidual chips to be aligned in time, the code offset is considered
to be a discrete random variable uniformly distributed between 0
and N-1. The reference receiver is modeled by a continuous-time
matched filter, which is matched to the transmitter’s chip pulse,
followed by a discrete-time correlator which correlates the output
of the matched filter with the reference receiver’s signature se-
quence. Given chip synchronization to the reference receiver, the
test statistic for the l-th source and is

zl = alilαlβl (4)



βl is the periodic cross-correlation between the signature se-
quences of the l-th MAI source and the reference source

βl =

N−1∑
n=0

bl[n− jl]b0[n] (5)

where bl[n− jl] = bl[N + n− jl] for n− jl < 0.

3 Random Signature Sequences, Ideal
Channels

In this section, the probability of error, Pe, is derived for signature
sequences with each of the equally likely bits bl[n] ∈ {+1,−1}.
We model ideal channels without fading where the only effect in-
troduced by the channel is a deterministic amplitude attenuation
given by αl. Without loss of generality, we also assume that the
information bit transmitted by the reference transmitter is +1.
For this system model with L MAI sources, the probability of
error is given by

Pe = Pr(r = z0 +

L∑
l=1

zl + n < 0 | i0 = +1)

=

∫ 0

−∞
p(r)dr. (6)

where p(r) is the probability density function (PDF) of the test
statistic of the received signal. In order to avoid numerical inaccu-
racies incurred by the direct integration of (6), NCI calculates the
Pe by integrating the MGF, h(u) = E{exp(−ru)}, of the received
signal’s test statistic, r, along a path in the complex plane. Since
the MGF is equivalent to the Laplace transform of the PDF, p(r)
can be recovered from the inverse Laplace transform of the MGF
of the test statistic

p(r) =
1

2πj

∮
h(u) exp(ur)du. (7)

Substituting (7) into (6), the probability of error is given by

Pe =
1

2πj

∮
h(u)

u
du (8)

given that the real part of the contour is positive. Since z0, zl,
and n in (6) are independent, the MGF of the test statistic r is

h(u) = γ(u)η(u)hn(u) (9)

where γ(u), η(u), and hn(u) represent the MGF of the reference
signal, the multiple access interference and the Gaussian noise,
respectively.

Recalling that i0 = +1 was transmitted by the reference source,
the MGF of the reference signal term is

γ(u) = E{exp(−uz0)} = exp(−ua0α0N). (10)

For random signature sequences, the MGF due to the MAI term
is

η(u) = E{exp(−u

L∑
l=1

zl)}

=

L∏
l=1

N−1∏
n=0

1

2
exp(ualαl) +

1

2
exp(−ualαl)

=

L∏
l=1

(cosh(ualαl))
N . (11)

In addition, the MGF of the white Gaussian noise is

hn(u) = exp(
1

2
σ2

nu2). (12)

In order to minimize round off error, Helstrom [4] rewrites the
integral in (8) as

Pe =
1

2πj

∮
exp(Φ(u))du (13)

where the phase of the integrand, Φ(u), is

Φ(u) = ln(h(u)/u). (14)

From (9), (10), (11), (12), and (14), the phase of the Pe for random
signature sequences with ideal channels is given by

Φ(u) = N

L∑
l=1

ln(cosh(ualαl)) +
1

2
σ2

nu2 − a0α0Nu− ln u. (15)

Helstrom and Ritcey [5] showed the optimal contour to be the
path of steepest descent where =(Φ(u)) = 0. Hence, the contour
in (13) is chosen to cross the real axis in the complex plane at the
saddlepoint, u0, of the phase where the saddlepoint is defined to
be the location on the real axis where the first derivative of the
phase equals zero, Φ′(u0) = 0. Typically, the Newton-Raphson
method is used to numerically determine the saddlepoint. The
first and second derivatives of the phase, which are required for
the Newton-Raphson calculation, are

Φ′(u) = N

L∑
l=1

alαl tanh(ualαl) + σ2
nu− a0α0N − 1

u
(16)

and

Φ′′(u) = N

L∑
l=1

(alαl)
2sech(ualαl) + σ2

n +
1

u2
. (17)

In order to simplify the calculations, the contour can be approxi-
mated as a straight line parallel to the imaginary axis intercepting
the real axis at the saddlepoint. Thus, the Pe from (13) can be
rewritten as

Pe =
1

2πj

∫ u0+j∞

u0−j∞
exp(Φ(u))du. (18)

Rice [7] showed that trapezoidal integration should be used to
approximate the contour integral in (18). The initial step size in
the trapezoidal integration is chosen to be

∆v =
√

2/Φ′′(u0) (19)

and the step size should be halved until the difference between
the last two Pe estimates is less than the desired accuracy.

4 Deterministic Signature Sequences, Ideal
Channels

In the previous section, the Pe was computed under the assump-
tion of random signature sequences. In practice, the signature se-
quences in a system are designed to minimize the cross-correlation
between any two transmitters. The Pe in this section is developed
for a known set of signature sequences. The MGF of the MAI



term for a set of deterministic signature sequences with elements
bl[n] ∈ {1,−1} is

η(u) = E{exp(−u

L∑
l=1

alilαlβl)}. (20)

For the signature sequences of an interference source, bl, and
the reference source, b0, the periodic cross-correlation is given
by the discrete random variable βl in (5) and has a probability
mass function randomized by the code offset jl. Since the random
variables il and βl, for l 6= 0, are independent

η(u) =

L∏
l=1

Eil,βl{exp(−ualilαlβl)} =

L∏
l=1

ξl (21)

where

ξl =

N∑
b=−N

exp(−ualαlb)pβl(b). (22)

To simplify the equation, we have accounted for the four possible
combinations of information bits, il[k− 1] ∈ {+1,−1} and il[k] ∈
{+1,−1}, in determining pβl(βl) when averaging over all possible
code offsets jl. For the deterministic signature sequences, the
phase and its first two derivatives are

Φ(u) =

L∑
l=1

ln(ξl) +
1

2
σ2

nu2 − a0α0Nu− ln u. (23)

Φ′(u) =

L∑
l=1

ψl

ξl
+ σ2

nu− a0α0N − 1

u
(24)

Φ′′(u) =

L∑
l=1

ζlξl − ψ2
l

ξ2
l

+ σ2
n +

1

u2
. (25)

where

ψl = −
N∑

b=−N

(alαlb) exp(−ualαlb)pβl(b). (26)

ζl =

N∑
b=−N

(alαlb)
2 exp(−ualαlb)pβl(b). (27)

5 Random Signature Sequences, Slowly
Fading Channels

Returning to random signature sequences, let us now consider the
effects of frequency-nonselective, slowly fading channels on the
Pe. To model a slowly fading channel, the deterministic ampli-
tude attenuation of the ideal channel, αl, is replaced by a random
variable which we choose to represent with a Rayleigh distribu-
tion. For the test statistic given in (6), the expected value of the
MGF is

Eα{h(u)} = Eα0{γ(u)}Eαl{η(u)}hn(u). (28)

From Appendix A, the expected value of the MGF of the reference
signal transmitted through a Rayleigh fading channel is

Eα0{γ(u)} = 1 − exp(
(ua0Nσ0)

2

2
)(ua0Nσ0)

×
√

π

2
erfc(

ua0Nσ0

2
) (29)

where the erfc() is the complex complementary error function. An
algorithm for computing the complex erfc() is provided in [9].

Like the reference source, all of the MAI sources are also transmit-
ted through independent Rayleigh fading channels. With respect
to the channel attenuation, the expected value of the MGF of the
MAI term given in (11) is

Eαl{η(u)} =

L∏
l=1

(

∫ ∞

0

(cosh(ualαl))
Npαl(αl)dαl). (30)

Each of the integrals in (30) cannot be solved in closed form due
to the Rayleigh probability density function. Hence, we seek an
approximation that can be rapidly computed for various values
of complex u by expanding the cosh() as a Maclaurin series and
substituting a Padé approximation for the infinite summation.
The Miller algorithm, given in Appendix B, can be used to raise
the cosh() to a power

(cosh(uαlal))
N =

∞∑
k=0

v2k(ualαl)
2k. (31)

Substituting (31) into (30) and reversing the integral and the
summation, we get

Eαl{(cosh(ualαl))
N} =

∞∑
k=0

v2kµ
(2k)
l u2k (32)

where µ
(2k)
l are the even moments of αl. For the Rayleigh distri-

bution, the moments are

µ
(k)
l = (2σ2

l )
k
2 Γ(1 +

k

2
). (33)

Therefore, the expected value of the MGF of the MAI term is

Eαl{η(u)} =

L∏
l=1

(

∞∑
k=0

v2kµ
(2k)
l u2k). (34)

A Padé approximation produces a rational approximation of the
infinite series by the moment matching approach [8]. For each of
the interference sources, the Padé approximation, Pl(u), is

∞∑
k=0

v2kµ
(2k)
l u2k =

gl

∏MN

i=1
(u− zl,i)∏MD

j=1
(u− pl,j)

+ O(uMN +MD+1)

= Pl(u) + O(uMN+MD+1) (35)

Replacing the cosh term in (15) with the Padé approximation
for the MGF of each MAI source, the phase and its first two
derivatives for this system model are

Φ(u) =

L∑
l=1

ln(Pl(u)) +
1

2
σ2

nu2 + ln(Eα0{γ(u)})− ln u. (36)

Φ′(u) =

L∑
l=1

(

MN∑
i=1

1

(u− zl,i)
−

MD∑
j=1

1

(u− pl,j)
)

+ σ2
nu +

E′
α0{γ(u)}

Eα0{γ(u)} −
1

u
. (37)

Φ′′(u) =

L∑
l=1

(−
MN∑
i=1

1

(u− zl,i)2
+

MD∑
j=1

1

(u− pl,j)2
) + σ2

n

+
Eα0{γ(u)}E′′

α0{γ(u)} − (E′
α0{γ(u)})2

(Eα0{γ(u)})2 +
1

u2
.(38)



6 Deterministic Signature Sequences,
Slowly Fading Channels

The final DS/CDMA system model considered in this paper in-
cludes deterministic signature sequences with slowly fading chan-
nels. Again, the channel attenuation from each of the sources
to the reference receiver is modeled as a random variable with a
Rayleigh probability density function. The expected value of the
MGF of the reference signal with Rayleigh fading is given in (29).
With respect to αl, the expected value of the MGF of the MAI
term for deterministic signature sequences in (21) is

Eαl{η(u)} =

L∏
l=1

Eαl,il,βl{exp(−ualilαlβl)} =

L∏
l=1

νl(u) (39)

where

νl(u) =

N∑
b=−N

Eαl{exp(−ualαlb)}pβl(b). (40)

The phase and its first two derivatives for this system model are

Φ(u) =

L∑
l=1

ln(νl(u)) +
1

2
σ2

nu2 + ln(Eα0{γ(u)})− ln u. (41)

Φ′(u) =

L∑
l=1

χl(u)

νl(u)
+ σ2

nu +
E′

α0{γ(u)}
Eα0{γ(u)} −

1

u
. (42)

Φ′′(u) =

L∑
l=1

νl(u)υl(u)− χ2
l (u)

ν2
l (u)

+ σ2
n

+
Eα0{γ(u)}E′′

α0{γ(u)} − (E′
α0{γ(u)})2

(Eα0{γ(u)})2 +
1

u2
.(43)

where

χl(u) =
1

2

N∑
b=−N

E′
αl
{exp(−ualαlb)}pβl(b). (44)

υl(u) =
1

2

N∑
b=−N

E′′
αl
{exp(−ualαlb)}pβl(b). (45)

7 Numerical Results

In this section, the Pe for the systems presented in the previous
sections are evaluated using the DS/CDMA software tool based
on NCI. Figure 1 shows how the probability of error varies ac-
cording to the different system models for a range of values of
Eb/N0. In each model, L = 7 and N = 31 for each source. Gold
codes are used for the deterministic chip sequences. For the ran-
dom chip sequence with Rayleigh fading model, Mn = 16 and
Md = 18. The value of Eb/N0 refers to the reference receiver and
is defined to be Eb/N0 = 10 log10(NE{α2

0}a2
0)/(2σ2

n)) dB for the
case of rectangular chips. In this example, the signal-to-interferer
ratio (SIR), which provides the ratio of the power of the refer-
ence source to the power of the interference source, is 5 dB for
the first MAI source and 10 dB for the remaining MAI sources
where SIR = 10 log10((E{α2

0}a2
0)/(E{α2

l }a2
l )) dB. In all of the

examples, αl = 1 for each of the ideal channels and E{α2
l } = 1

for each of the Rayleigh fading channels. Figure 1 shows that,
for the ideal channel cases, the difference between random chip

sequences and deterministic chip sequences can be significant for
smaller values of Pe. This is to be expected since the gold codes
are designed to minimize the cross-correlation between the codes.
However, the Pe for the models involving Rayleigh fading chan-
nels are indistinguishable since the effects of the Rayleigh fading
completely mask the improvements introduced by specifying the
signature sequences.

Rand Sig Seq, Ideal Chan

Det Sig Seq, Ideal Chan 

Rand Sig Seq, Rayl Fad  

Det Sig Seq, Rayl Fad   
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Figure 1: Pe vs. Eb/N0 for all system models.

In the next example, we use the software tool to evaluate the
how the number of MAI sources affects the Pe. Figure 2 plots
the Pe for L = 2, 4, and 6 across a range of values of Eb/N0 for
the case of deterministic gold codes of length N = 31 with ideal
channels. The SIR is 0 dB for the first MAI source and 5 dB for
the remaining MAI sources.
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Figure 2: Pe vs. Eb/N0 for various number of sources.

In figure 3, the effects of varying the SIR is studied for the case
of deterministic gold codes of length N = 31 with Rayleigh fading
channels. The Pe are shown for L = 4, and SIR = 0 dB, 5 dB, and
10 dB. In this example, we show how the tool is able to model
different power levels for the MAI sources. Although we have
chosen to make all of the power level identical for the each of the
MAI sources, we can vary each of the source’s power individually.

8 Conclusion

Under assumption that all of the MAI sources are chip synchro-
nized to the reference transmitter and receiver, the error probabil-
ities for all cases of random and deterministic signature sequences
and ideal and Rayleigh fading channels were derived. Numerical
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Figure 3: Pe vs. Eb/N0 for various values of SIR.

contour integration was used as the computational engine of a
software tool to efficiently compute the Pe. The computation
time required to evaluate the Pe for the case of random signature
sequences with slowly fading channels was significantly reduced
by modeling the noise introduced by each MAI source as a Padé
approximation. Results show that the difference in the Pe for the
models based on random and deterministic signature sequences
with ideal channels can be significant, but the Pe for the models
involving Rayleigh fading channels are indistinguishable.
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Probability Functions”. IEEE Trans. Aero. and Elect. Sys.,
AES-30, No. 2, pp. 416-424, April 1994.

[9] Poppe, G.P.M., and C. M. J. Wijers, ”More Efficient Compu-
tation of the Complex Error Function”. ACM Transactions

on Mathematical Software, Vol. 16, No. 1, pp. 38-46, March
1990.

A MGF of the Reference Signal in a
Rayleigh Fading Channel

This appendix calculates the expected value, with respect to the
channel attenuation α, of the moment generating function of the
reference signal for the DS/CDMA system models with Rayleigh
fading. The expected value is

Eα{exp(−sα)} =

∫ ∞

0

exp(−sα)(
α

σ2
exp(

−α2

2σ2
))dα. (46)

Completing the square and substituting t = α + σ2s/σ,

Eα{exp(−sα)} = 1− (σs) exp(
(σs)2

2
)

√
π

2
erfc(

σs√
2
). (47)

The first derivative, which is needed for the determination of the
saddlepoint, can be calculated using Leibnitz’s Rule.

E′
α{exp(−wuα)} = σ2w2u

− (σw + σ3w3u2) exp(
(σwu)2

2
)

√
π

2
erfc(

σwu√
2

). (48)

Likewise, the second derivative is

E′′
α{exp(−wuα)} = σ4w4u2 + 2σ2w2 − exp(

(σwu)2

2
)

×(3σ3w3u + σ5w5u3)

√
π

2
erfc(

σwu√
2

). (49)

B Miller’s Algorithm

Miller’s algorithm [8] provides an efficient method for raising a
polynomial, f(z), to a power provided f(0) = 1.

f(z) =

∞∑
n=0

cnzn (50)

W (z) = [f(z)]k =

∞∑
n=0

vnzn (51)

vn =
1

n

n∑
m=1

[(k + 1)m− n]cmvn−m n = 1, 2, · · · (52)

v0 = c0 = 1 (53)


